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Abstract. We have developed a mathematical theory about using phys-
ical experiments as oracles to Turing machines. We suppose that an ex-
periment makes measurements according to a physical theory and that
the queries to the oracle allow the Turing machine to read the value
being measured bit by bit. Using this theory of physical oracles, an
experimenter performing an experiment can be modelled as a Turing
machine governing an oracle that is the experiment. We consider this
computational model of physical measurement in terms of the theory of
measurement of Hempel and Carnap (see [16, 13]). We note that once a
physical quantity is given a real value, Hempel’s axioms of measurement
involve undecidabilities. To solve this problem, we introduce time into
Hempel’s axiomatization. Focussing on a dynamical experiment for mea-
suring mass, as in [1, 3, 5, 4, 6], we show that the computational model of
measurement satisfies our generalization of Hempel’s axioms. Our anal-
ysis also explains undecidability in measurement and that quantities are
not always measurable.

1 Introduction

We are developing a methodology and mathematical theory to examine
how data is represented and computations are performed by physical
systems. The research programme is shaped by questions about what
can be computed by (i) physical systems in isolation and (ii) physical
systems combined with algorithms. The methodology is formulated using
? Corresponding author.



five principles that focus on the role of a physical theory in formalising
experiments. Our theory for isolated physical systems begins in [8–11]
and that for physical systems and algorithms begins in [1–4]. A central
technical idea is to use a physical experiment as an oracle to a Turing
machine. This changes the nature of oracle queries and introduces new
and subtle protocols to manage the time taken by queries and tolerances
in data exchanges. Typically, we use an experiment E(x) designed to
measure a physical quantity represented by a real number x. The oracle
is expected to extend the computing power of the Turing machines. For
specific experiments, we have characterised the class of sets decidable by
these machines using non-uniform complexity classes and we have shown
that the oracles extend the power of Turing computability substantially.

However, recently in [4, 6], we have added a new, sixth principle which
changes the perspective of the mathematical theory of Turing machines
with physical oracles. Instead of viewing the experiment as an oracle
boosting the power of Turing machines, we view the Turing machine as
controlling and, indeed, performing the experiment. Specifically, Principle
6 leads us to suppose that:

The Turing machine models a human experimenter conducting the
experiment.

The relationship between experimenter and experiment is modelled
by the protocols that apply to the oracle queries. In [4] we study in some
detail a Newtonian experiment to measure mass, which reveals concepts
and properties of wide applicability.

Thus, with Principle 6 of [4, 6], we find we are in possession of a
fledgling computational model of the process of doing physical experi-
ments and making measurements. The model accommodates

(i) logical properties of the process of following an experimental pro-
cedure, made up of instructions specified by a physical theory; and

(ii) quantitative constraints of precision and error margins and of the
cost in time and other resources needed to perform experiments.
We have looked at several experiments and the questions arise:

To what extent is our computational model of experimentation gen-
eral? What is measurement?

In this paper we begin to explore these questions with the help of the
philosophy of physics. We relate our computational model to the desider-
ata of Geroche and Hartle [15] for an investigation into computable as-
pects to measurement. We consider the axiomatic theory of measurement
established by Carl G. Hempel in [16], and elaborated by Rudolf Carnap
in [13], and apply it to our computational models of measurement. Do our



models satisfy Hempel’s axioms? Yes. Do they reveal new general prop-
erties of measurement? Yes. Indeed, we show that the models uncover
some shortcomings in Hempel’s characterisation, which we repair with
new axioms.

Hempel’s theory is based on two predicates intended to make com-
parisons between some physical attribute: think of an equivalence and
ordering applied to some attribute of a set of objects. On measuring the
attribute using real numbers, the comparison predicates are mirrored by
the standard predicates = and <, which are undecidable on computable
real numbers. This is more than an inconvenience for an axiomatic the-
ory of measurement, where tolerances and accuracy are central concepts.
This undecidability can be ameliorated in different ways. We introduce
the operational concept of computational resources, specifically time, into
Hempel’s axioms; the resulting axiomatisation we believe to be new. The
idea of considering time as a cost in deciding the equality of measure-
ments is suggested by our previous technical work on the model (e.g., see
[1, 3]).

Let us consider the impact of adding time to Hempel’s view of mea-
surement. Hempel uses the experience of measuring mass with a balance
scale to introduce his axioms. The notions of two objects weighing the
same, or one weighing less than the other, are quite intuitive. However,
as the masses of the two objects approach one another, the measurement
becomes more and more troublesome, due to friction and nature of the
balance: two objects in the pans may be in equilibrium one day but are
found no longer to be in equilibrium the next. Hempel in [16], end of
Chapter 10 and middle of Chapter 11, develops the following argument:

Hempel 1 The most important — and perhaps the only — type of fundamental mea-
surement used in the physical sciences is illustrated by the fundamental measurement
of mass, length, temporal duration, and a number of other quantities. It consists of two
steps: first, the specification of a comparative concept, which determines a nonmetrical
order; and, second, the metrization of that order by the introduction of numerical val-
ues [...] Now we return to our illustration [of measuring mass]. In formulating specific
criteria for this case, we will use abbreviatory phrases: of any two objects, x and y [...]
we will say that x outweights y if, when the objects are placed into opposite pans of
a balance in a vacuum, x sinks and y rises; and we will say that x balances y if under
the conditions described the balance remains in equilibrium.

Hempel is aware of the need of improving accuracy to define metrical
properties for the mass concept (hence the vacuum5). However, there is
5 Why should the balance be in a vacuum? It is not because of friction. It is be-

cause there are substances in the atmosphere that have “negative weight” such as
hidrogenium and helium.



no awareness, either in Hempel’s or in Carnap’s theories, that the time
to run an experiment is actually a fundamental concept when allocating
numerical values to attributes in a consistent way. Hempel is conscious
of this limitation of his axiomatization of measurement of quantities that
take real values, or even rational values. In a footnote, he declares the
following:

Hempel 2 This account of the fundamental measurement of mass is necessarily sche-
matized with a view to exhibiting the basic logical structure of the process. We have
to disregard such considerations as that the equilibrium of a balance carrying a load
in each pan may not be disturbed by placing into one of the pans an additional object
which is relatively light but whose mass is ascertainable by fundamental measurement.
This means that fundamental measurement does not assign exactly one number to
every object [...]

Measurement is a mapping from objects to numbers. By introducing
time in Hempel’s axiomatization, we establish a more accurate semantical
basis for the these maps.

The structure of the paper is this. In Section 2, we review the Hempel-
Carnap theory of measurement. In Section 3, we recall the computational
model of an experiment to measure mass from [4]. Such computational
models are gedankenexperimente. We review the ideas of Geroch and Har-
tle [15] in Section 4. In Section 5 we look at mass in Newtonian dynamics.
In Section 6, we present a new axiomatization of measurement by gener-
alising Hempel’s axioms in order to introduce the time taken by a mea-
surement process. This is, indeed, a generalisation, from which we can
recover the old axiomatization. Finally, in Section 7, we show how the
computational perspective implies that not all quantities are measurable.

2 Theory of measurement

2.1 The three concepts of measurement

According to Hempel in [16], and Carnap in [13], the construction of a
quantitative concept, based on measurement, involves three phases. For
illustration, we use the quantitative concept of mass as measured by the
balance.

The classificatory phase. Classification is based upon some primitive
method of sorting concepts into groups according to similarities. What
aspect is chosen is termed an attribute. Classification is essentially sub-
jective. To make finer classifications, attention must be paid to details of



the objects being classified, which demands more time of the taxonomist.

The comparative phase. The attributes that define the classification
need to be compared. A comparative concept is something observable of
attributes and what is observed is termed an event. It constitutes the
basis for a quantitative concept; although the comparative concept seems
to be unique, the quantitative one can be understood and axiomatized in
different ways.

For the concept of weight, we introduce the comparative concepts of
lighter, heavier, and equal in weight. These concepts have an empirical
procedure by which we can take any pair of objects and observe:

If the two objects balance, they are of equal weight. If the objects do
not balance, the object on the pan that rises is lighter than the object on
the pan that sinks.

Let these observable events define the relations of “equality” E and
“less than” L, respectively.

The quantitative phase. The attributes we wish to compare are as-
signed numerical values by a map M from objects to numbers. In [13],
Carnap says:

Carnap 1 The qualitative language is restricted to predicates (for example, “grass is
green”), while the quantitative language introduces what are called functor symbols,
that is, symbols for functions that have numerical values. This is important, because
the view is widespread, especially among philosophers, that there are two kinds of
features in nature, the qualitative and the quantitative. Some philosophers maintain
that modern science, because it restricts its attention more and more to quantitative
features, neglects the qualitative aspects of nature and so gives an entirely distorted
picture of the world. This view is entirely wrong, and we can see that it is wrong if
we introduce the distinction at the proper place. When we look at nature, we cannot
ask: “Are these phenomena that I see here qualitative phenomena or quantitative?”
That is not the right question. If someone describes these phenomena in certain terms,
defining those terms and giving us rules for their use, then we can ask: “Are these the
terms of a quantitative language, or are they the terms of a prequantitative, qualitative
language?”.

The measurements must preserve the comparisons. For mass, we need
to define the relations between the events associated with the balance
scale and the map M : for any objects a and b, (i) if aEb then M(a) = M(b)
and (ii) if aLb then M(a) < M(b).



2.2 The axiomatization of measurement

In Hempel’s book [16], Part III, Chapters 9 to 13, we find an axiomatiza-
tion of measurement in Physics and other empirical sciences; a discussion
of Hempel’s axiomatization is Carnap [13].

Consider a class O of physical objects endowed with some attribute
(such as mass, electric charge, or temperature, etc.). A measurement of
an attribute in the sense of Hempel is a map M : O → N , where N
is a number system such as the integers Z, rationals Q, or reals R. For
definiteness, we will choose M : O → R.

Hempel’s axiomatization of measurement establishes an ordering of
the objects of O. To have a measurement, we need an instrument or
experimental apparatus, and observations defining events that implement
physically the two special comparative predicates E and L over the set
O:

1. If objects a and b are identical in the observed attribute, then aEb is
the case.

2. If object a is less than object b in the observed attribute, then aLb is
the case.

The experimental apparatus works with the objects from O, allowing
the experimenter to establish a comparison of values of a given attribute.

Definition 1. Given two binary relations E and L, L is E-irreflexive if,
for all objects a and b in O, if aEb is the case, then aLb does not hold.

Definition 2. Given two binary relations E and L, L is E-connected if,
for all objects a and b in O, if aEb does not hold, then aLb or bLa is the
case.

Definition 3. Two binary relations E and L determine a comparative
concept, or a quasi-series, for the elements of O, if E is an equivalence
relation and L is transitive, E-irreflexive, and E-connected.

Let E be the set of observable events. Let I : O × O → E be an
abstract implementation map. In Hempel’s examples in [16], the set E
of events can be reduced to the bipolar set {−1, 0,+1}: the outcome of
each experiment with objects a and b will tell us that either aLb (the
event denoted by −1), or aEb (the event denoted by 0), or bLa (the event
denoted by +1). The experimenter has to identify which physical events
are to be denoted by −1, 0,+1.



In the example of the balance, if we put objects a and b in the left
pan and the right pan, respectively. Event −1: the left pan rises and the
right pan sinks — aLb) is the case. Event +1: the left pan sinks and the
right pan rises — bLa is the case. Event 0 (or the non-event): the balance
remains in equilibrium — aEb is the case.

A careful reading of Chapter 12 of [16], on the notion of fundamental
measurement, introduced by Campbell in [12], we find that a detailed sub-
structure of O can be identified, consisting of a standard object, called
the unit mass, together with its multiples and submultiples: this sub-
structure we call the toolbox of standards6. By reducing the number of
axioms in Hempel’s theory (namely, removing the axioms of extensivity,
developed by Suppes in [17]), we can provide a first workable definition
of measurement map for a set of objects:

Definition 4. Let E and L be comparative relations on the set O of ob-
jects (Definition 3). Suppose there exists an experimental apparatus to
witness these relations and let E be a set of elements denoting physical
events.

Suppose {−1, 0,+1} ⊆ E and whenever the experiment is done with
arbitrary objects a, b ∈ O, if the outcome is event −1, then aLb is the
case, if the outcome event is +1, then bLa is the case, and if the outcome
is 0, then aEb is the case.

Then the map M : O → R is a measurement map if

Axiom 1 If aEb, then M(a) = M(b).
Axiom 2 If aLb, then M(a) < M(b).

We think this is a good definition capturing Hempel’s construction of
a quantitative concept from a comparative concept, as [16] suggests:

Hempel 3 Any function M which assigns to every element x of O exactly one real-
number value, M(x), will be said to constitute a quantitative or metrical concept, or
briefly a quantity (with the domain of application O); and if M meets the conditions
just specified, we will say that it accords with the given quasi-series.

The axiomatization allows to prove simple results such as:

Proposition 1. For all a, b in O, one, and only one, of the following
statements holds: (a) aEb, (b) aLb, or (c) bLa.

6 This is done by considering a semigroup of objects O = 〈O, ◦; 1〉, with the distin-
guished element 1 called the unit, and some internal structure to generate fractions
and multiples of the unit.



Proof: First, we show that at least one of the three conditions hold. Sup-
pose aEb. Then we are done. Suppose that aEb is not the case. Since L
is E-connected, either aLb or bLa. Thus, one of the three relations holds.
We show that only one can hold.

(a) Suppose that aEb. Since L is E-irreflexive, aLb is not the case. Since
E is an equivalence, bEa is also the case. Again, since L is E-irreflexive,
bLa is not the case.

(b) Suppose that aLb. Since aEa, we can not have bLa, because by
transitivity we would get aLa and L is E-irreflexive. We can not also have
aEb, since E-irreflexivity implies that aLb, a contradiction.

(c) The argument is the same as (b). �

The converse of the axioms in Definition 4 hold.

Proposition 2.
If M(a) = M(b), then aEb. (1)

If M(a) < M(b), then aLb. (2)

Proof: We argue by contraposition. (1) Suppose that aEb is not the case.
Then we have either aLb or bLa, that is either M(a) < M(b) or M(b) <
M(a), by definition. It follows that M(a) 6= M(b). (2) Suppose now that
aLb is not the case. Then either aEb or bLa, that is either M(a) = M(b)
or M(b) < M(a). �

Proposition 3.

∀x ∀y (xEy ⇔ ∀u ((xLu⇔ yLu) ∧ (uLx⇔ uLy))). (3)

∀x ∀y ∀z ((xEy ∧ yLz)⇒ xLz). (4)

Axioms 4 and 4 in Definition 4, are not far from Hempel’s own theory
as stated in [16]:

Hempel 4 Let E and L be two relations which determine a quasi-serial order for a
class O. We will say that this order has been metricized if criteria have been specified
which assign to each element x of O exactly one real number, M(x), in such a manner
that the following conditions are satisfied for all elements x, y of O: [follows Axioms 4
and 4].

This (first) axiomatization of measurement7 is troubled by the unde-
cidability of = for quantities ranging over the real numbers. In Section 6,
7 There can be further structure for the map M , e.g., depending on the fact that the

attribute considered is either extensive (e.g., mass) or intensive (e.g., temperature).



we will show how to generalize Hempel’s axioms in order to have decid-
able comparison relations, by the introduction of time complexity to an
experiment.

3 The collider experiment

In this section we describe an example of an experiment about elastic
collision for the purpose of measuring the unknown (inertial) mass of a
particle. The experiment is conducted exactly as described in [4]. This
type of experiment to measure mass was and still is at the heart of me-
chanics. A generalization of the collision experiment can be used to mea-
sure the mass of a star or of a planet, measures that cannot be done with
the balance scale.

3.1 Theory

As a gedankenexperiment, we consider a very simple situation at the limit
of physical reality: a one dimensional elastic collision of two particles. The
elastic collision between two particles on a line is dictated by two basic
laws of Physics: the conservation of linear momentum and the conserva-
tion of kinetic energy, both of which can be derived from Newtonian laws
of dynamics. See Section 5.

3.2 Experiment

In the one dimensional collision the center of mass of the two particles
are in the same line of motion. Let m and µ be the masses of the two
particles. We will assume that the particle of “unknown” mass µ is always
at rest before the collision, and that the “proof” particle of mass m is
projected along the line towards the particle of unknown mass µ with
speed u = 1.0 (± ε) ms−1, e.g. with 0 ≤ ε ≤ 0.18. After the collision the
particle of mass m acquires the speed vm and the particle of mass µ is
projected forward with speed vµ.

By the conservation of momentum and kinetic energy, the collision is
described by the equations:

mu = mvm + µvµ, (5)

8 This error margin in the initial speed of the proof particle of mass m means that
precision in speed does not matter for this experiment.
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that can be solved for vm and vµ:

vm =
m− µ
m+ µ

u, (7)

vµ =
2m

m+ µ
u. (8)

From these formulae we see that after a collision:
(a) if m < µ, then the proof particle move backwards after the colli-

sion;
(b) if m > µ, then the proof particle will move forward; and
(c) if m = µ, then the proof particle of mass m comes to rest and the

particle of unknown mass µ is projected forward with the previous value
of the speed of the proof particle.

This experiment can be designed to measure the unknown mass µ,
using proof particles of known mass m projected at the same speed u.

We establish the convention that the particle of unknown mass is
placed at the origin of coordinates and points P− ≡ −1 m and P+ ≡



+1 m are the flags of the experimenter’s observations: when the proof
particle is seen crossing the points P− or P+ the experiment terminates.
If the proof mass crosses the flag P− then we have m < µ (as depicted in
Figure 1), and if it crosses the flag P+, we have m > µ.

For this experiment there are various facts that are largely irrelevant,
or where errors can be tolerated. These include the (finite) distance be-
tween the two flags, the precision of the placement of the flags, the error
in placing the particle of the unknown mass at the origin (let us say ap-
proximately 0 m), and the initial speed of the proof particle (let us say
approximately 1 ms−1). Note that the observed velocities of the particles
after the collision, after crossing one or both the flags, are irrelevant.

However quantities and facts that are relevant include: the one dimen-
sional character; that the masses of the unknown particles are continuous
variable in the range (0, 1); that the particle of unknown mass µ is at
rest; and that the collisions are elastic.

Looking closer to the experiment, we however find an experimental
barrier: the time for the proof particle crossing the distance of 1 m after
the collision is given by

texp =
1
u

∣∣∣∣m+ µ

m− µ

∣∣∣∣ , (9)

that, for the values we will take of the masses and initial speed, is of the
order of

A

|m− µ|
≤ texp ≤

B

|m− µ|
, (10)

for some constants A and B.

3.3 CME as Oracle

In the shooting state the machine prepares and fires a proof particle of
mass m as detailed above. The experiment continues until the proof par-
ticle crosses one of the flags P±, and then returns a state m < µ or m > µ
to the Turing machine.

The Turing machine is connected to the collider experiment CME in
the same way as it would be connected to an oracle: we replace the query
state with a shooting state (qs), the “yes” state with a lesser state (ql),
and the “no” state with a greater state (qg). The resulting computational
device is called the (analogue-digital) collider machine experiment.



In order to carry out an experiment, the machine will write a word z
in the query tape and enter the shooting state. The word z codes for a
dyadic rational mass m of the “proof” particle. In the shooting state the
machine prepares and fires a proof particle of mass m as detailed above.
The experiment continues until the proof particle crosses one of the flags
P±, and then returns a state m < µ or m > µ to the Turing machine.

Technically, this word z will either be “1”, or a binary word beginning
with 0. We will use y ambiguously to denote both a word y1 . . . yn ∈ {1}∪
{0s : s ∈ {0, 1}∗} and the corresponding dyadic rational

∑n
i=1 2−i+1yi ∈

[0, 1]. In this case, we write |y| to denote n, i.e., the size of y1 . . . yn.
Consider the precision of the experiment. When measuring the output

state the situation is simple: either the proof particle of mass m crosses
P− or it crosses P+ (or, after some timeout, no proof particle is de-
tected). Errors in observation do not arise. There are different postulates
for the precision of the experiment, and we list some in order of decreasing
strength:

Definition 5. The CME is error free if the mass of proof particle can
be set exactly to any given dyadic rational number. The CME is error
prone with arbitrary precision if the mass of proof particle can be set only
to within a non-zero, but arbitrarily small, dyadic precision. The CME
is error prone with fixed precision if there is a value ε > 0 such that the
mass of proof particle can be set only to within a given precision ε.

3.4 Bisection algorithm

Now we can describe the algorithm in full detail. Let T : N → N be the
time given for the experiment to take place as a function (total map)
of the size of the sequence of bits setting the value of the mass of the
proof particle. The function T can be seen as a schedule, i.e., in each
experiment, in order to read the |m|-th bit of the mass µ, T (|m|) gives
the amount of time steps that the experimenter is prepared to wait until
resuming the experimental conditions. The function T can either be a
computable function or a non-computable function of its argument.

After setting the mass m, the CME will fire a proof particle of mass
m, wait T (|m|) time units, and then check if the particle crossed one of
the flags. If the particle crossed the flag P−, then the Turing machine
computation will be resumed in the state ql. If the particle crossed the
flag P+, then the Turing machine computation will be resumed in the
state qg. Perhaps, after time T (|m|), no proof particle is detected.



Bisection(t) — the bisection algorithm: a procedure to read
the first n bits of a unknown mass µ

1. input n — required precision coded by the number of places to the
right of the left leading 0;

2. m1 := 0, m2 := 1, m := 0 — initial values with no physical signifi-
cance; note |m1| = 0, |m2| = 1, and |m| = 0;

3. while |m| ≤ n do
(a) m := m1+m2

2 ;
(b) place the particle of unknown mass µ ∈ [0, 1] at the origin;
(c) project proof particle of massm to collide with particle of unknown

mass;
(d) if proof particle crosses the flag P− in time T (|m|) then m1 := m;

append 1; — it is known that µ ∈]m,m2[;
(e) if proof particle crosses the flag P+ in time T (|m|) then m2 := m;

append 0; — it is known that µ ∈]m1,m[;
(f) if no particle crosses the flags in time T (|m|) then return time

out;
4. end while;
5. output dyadic rational denoted by m.

The bisection method applies to each type of precision.

3.5 Notions of measurable

Definition 6. A mass µ is said to be measurable if there exists a schedule
T such that the digits of µ can be computed by performing the collision
experiment repeatedly. Otherwise, the mass is said to be non-measurable.

Definition 7. A mass µ is said to be effectively measurable if there exists
a computable schedule T such that the digits of µ can be computed by
performing the collision experiment repeatedly. Otherwise, the mass is
said to be effectively non-measurable.

To measure time we need to make step counting and time explicit
inside the machine. To introduce a system clock as part of the Turing
machine we can employ the concept of a time constructible function, in-
troduced by Hartmanis in 1965.

Definition 8. A total function f : N→ N is said to be time constructible
if there is a Turing machine M such that, for all n ∈ N and all inputs of
size n, M halts in exactly f(n) steps.



Definition 9. A mass µ is said to be feasible if there exists a time con-
structible computable schedule T such that the digits of µ can be computed
by performing the collision experiment repeatedly. Otherwise, the mass is
said to be non-feasible.

3.6 Notions of computation

Definition 10. An error free analogue-digital collider machine is a Tur-
ing machine connected to an error prone CME. In a similar way, we define
an error prone analogue-digital collider machine with arbitrary precision,
and an error prone analogue-digital collider machine with fixed precision.

If an error prone analogue-digital collider machine, with unknown
mass µ ∈ (0, 1), is triggered by the proof particle with dyadic rational
mass z ∈ [0, 1], then we are certain that the computation will be resumed
in the state ql if m < µ, and that it will be resumed in the state qg when
m > µ. We define the following decision criteria:

Definition 11. Let A ⊆ Σ∗ be a set of words over Σ. We say that an
error free analogue-digital collider machine M decides A if there exists a
time constructible schedule t to operate the coupled CME and an oracle
µ such that, for every input w ∈ Σ∗, w is accepted if w ∈ A and rejected
when w /∈ A. We say that M decides A in polynomial time, if M decides
A, and there is a polynomial p such that, for every w ∈ Σ∗, the number
of steps of the computation is bounded by p(|w|).

Definition 12. Let A ⊆ Σ∗ be a set of words over Σ. We say that an
error prone analogue-digital collider machine M decides A if there exists
a time constructible schedule t to operate the coupled CME with a given
oracle µ and a number γ < 1

2 , such that the error probability of M for
any input w is smaller than γ. We call correct to those computations
which correctly accept or reject the input. We say that M decides A in
polynomial time, if M decides A, and there is a polynomial p such that,
for every input w ∈ Σ∗, the number of steps in every computation of M
on w is bounded by p(|w|).

We can end this section with some results about questions that are
experimentally undecidable:

Proposition 4. That the proof mass coincides with the given unknown
mass cannot be established experimentally in finite time by the CME.



Proof: According to Equation 10, as m→ µ through the bisection method,
the time the experimenter has to wait goes to infinity, texp → +∞. If the
two masses coincide, then the experimenter will never know. �

As a trivial consequence of this statement we have the folowing theo-
rem:

Proposition 5. To know if the unknown mass is a dyadic rational cannot
be established experimentally in finite time by the CME.

And, finally, one important statement to keep in memory for the sec-
tions to follow, and its fundamental consequence.

Proposition 6. At each stage of the bisection algorithm, the lower bounds
on the time of a single experiment with the CME are exponential in the
size of the mass of the proof particle.

Proof: We know that the time taken by a single experiment is given by
Equation 10 at step n with |m| = n. Thus µ has a pattern of the form
µ = m±m′ × 2−n

′−1, with m′ ∈ [0, 1] and n′ > n, and texp has a pattern
of the form

texp ∼
K

|m− (m±m′ × 2−n′−1)|
,

that is,9

texp ∼
K

| ±m′ × 2−n′−1|
∈ Ω(2n) .

�
Thus, we have the following consequence:

Proposition 7. The protocol that processes queries between a Turing
machine and the collider takes time that is at least exponential in the
size of the mass of the proof particle specified by the queries.

4 Geroch-Hartle on computability and measurement

Let us consider the reflections of physicists Geroch and Hartle on com-
putability and measurement ([15]). Several of their speculations and ques-
tions are analysed formally in our theory.

Geroch and Hartle start by considering the concept of measurable
number in contrast to the concept of computable number:
9 Let f and g be total maps with signature N→ N. We say that f ∈ Ω(g) if there exists

a constant k ∈ R such that, for an infinite number of values of n ∈ N, f(n) > kg(n).



Geroch-Hartle 1 We propose, in parallel with the notion of a computable number
in mathematics, that of a measurable number in a physical theory. The question of
whether there exists an algorithm for implementing a theory may then be formulated
more precisely as the question of whether the measurable numbers of the theory are
computable.

Then they add some considerations on numbers being measurable
and/or computable:

Geroch-Hartle 2 We argue that the measurable numbers are in fact computable in
the familiar theories of physics, but there is no reason why this need be the case in order
that a theory have predictive power. Indeed, in some recent formulations of quantum
gravity as a sum over histories, there are candidates for numbers that are measurable
but not computable.

They introduce the notion of a technician measuring physical vari-
ables:

Geroch-Hartle 3 Regard number w as measurable if there exists a finite set of in-
structions for performing an experiment such that a technician, given an abundance of
unprepared raw materials and an allowed error ε, is able by following those instructions
to perform the experiment, yielding ultimately a rational number within ε of w.

The accuracy ε is to be understood as arbitrarily small. The technician
and set of instructions, together with some memory to take account of
intermediate calculations, we replace by a Turing machine. In our model
of measurement embodied in Principle 6, the Turing machine represents
formally the physicist or the experimenter. Thus, we propose the assump-
tion:

Thesis 1 The experimenter following his or her instructions is modelled
by a Turing machine. The measuring process is controlled by an algorithm
that runs on the machine, generating the atomic instructions, specified by
theory T , to be performed at each step of the experimental procedure.

This postulate says that the experimenter cannot escape the logic of fol-
lowing a set of rules as formalised by computability theory; and, of course,
that the logic of experimental procedures can be captured completely by
a Turing machine.

A point not considered in [15] is that not all measurements are pos-
sible. Assuming the physicist to be a Turing machine, then the limits of
Turing machine computation can determine limits on measurements and,
therefore, on the nature of physical experiments.



As we will see in Section 6, our work makes the concept of measurable
as precise as the concept of computable. Now this was not the intention
of [15]:

Geroch-Hartle 4 “Measurable” is analogous to, although of course much less precise
than, “computable”. The technician is analogous to the computer, the instructions to
the computer program, the “abundance of unprepared raw materials” to the infinite
number of memory locations, initially blank. Indeed, one can think of the measurable
numbers as those that are “computable” using an analog, rather than digital, computer.

Geroch and Hartle stress need for a theory to specify a gedankenex-
periment as follows:

Geroch-Hartle 5 The notion “measurable” involves a mix of natural phenomena
and the theory by which we describe those phenomena. Imagine that one had access to
experiments in the physical world, but lacked any physical theory whatsoever. Then no
number w could be shown to be measurable, for, to demonstrate experimentally that
a given instruction set shows w measurable would require repeating the experiment an
infinite number of times, for a succession of εs approaching zero. One could not even
demonstrate that a given instruction set shows measurability of any number at all, for
it could turn out that, as ε is made smaller, the resulting sequence of experimentally
determined rationals simply fails to converge. It is only a theory that can guarantee
otherwise. The situation is analogous to that of trying to demonstrate that a given
Fortran program shows some number to be computable. There is no general algorithm
for deciding this. In particular, it would not do merely to run the program for a few
selected values of ε.

Now, how does the Turing machine communicate with Nature? We
believe that this interaction is captured by the concept of the continuing
evolution of a physical experiment acting as an oracle.

Thesis 2 The measurement apparatus is taken to be an oracle to a Tur-
ing machine. The interaction is achieved through a protocol which counts
time. After each consultation, the oracle may provide one bit of the mea-
surement. This bit also provides the necessary information to the machine
to proceed with the experimental procedure.

Geroch and Hartle argue that every computable number is measurable.
A few paragraphs further on, Geroch and Hartle provide the flavour of a
proof. This proof is given to the reader by the following:

Geroch-Hartle 6 This is easy to see: Let the instructions direct that the raw materi-
als be assembled into a computer, and that a certain Fortran program — one specified
in the instructions — be run on that computer. That is, every digital computer is at
heart an analog computer.



Then the authors ask the following question:

Geroch-Hartle 7 We now ask whether, conversely, every measurable number is com-
putable — or, in more detail, whether current physical theories are such that their
measurable numbers are computable. This question must be asked with care.

Actually, the question received a very careful answer in our [9]: the
experiment SME demonstrates that there are numbers that are measurable
in Newtonian dynamics but that are not computable.

5 The laws of dynamics

In this section we explain how the collider experiment lies at the heart of
measuring masses in Classical Mechanics. Our aim is to define formally
the measurement function for (inertial) mass from Newtonian dynamics.

First law. The first law of Newton establishes that a particle not sub-
jected to a net force will move in a uniform motion in a straight line.
Since the motion of a particle has to be specified with respect to a partic-
ular reference frame, the content of the first law can only be understood if
such a reference frame is provided. Also, looking at the statement of the
first law, we see that the concept of force was not yet defined. The first
law should be regarded in the following way: in a region of space contain-
ing the particle, far away from all other matter, we can always define a
reference frame with respect to which that particle will move in a uniform
motion in a straight line. Such a reference frame is the inertial reference
frame; an example is that of the stars — Kepler’s reference frame10.

Second law. Having found a inertial reference frame, the departure from
a uniform motion in a straight line is “measured” by the kinematic con-
cept of acceleration. The departure from a constant speed in a straight
line should be due to a force that is impressed on the particle by some
physical process. If v is the velocity of a particle in that reference frame,
in an arbitrary instant of time t, its acceleration a = dv

dt will be non-
zero, and this quantity will be a convenient measure of the force f being
applied.

In accordance with the Aristotelian principle that causes should be
proportional to their effects, Newton assumed that f is proportional to
a, or f = ma, where m is the coefficient that will depend on the particle
10 The reference frame of the stars is a good inertial frame for experiments carried out

on Earth.



under consideration and that we will call (inertial) mass.11

Third law. According to Newton’s third law, when two particles P and
Q interact, the force applied on P by virtue of Q is equal to the force
applied on Q by virtue of P , but of opposite direction.

Newton defined momentum p of a particle as the product of its inertial
mass m by its velocity v.12 Taken together, the second and the third laws
give rise to the law of conservation of momentum that implies that the
sum of momenta of two particles before a collision is equal to the sum
of momenta of the same particles after that collision. If µ and 1 are the
masses of the two particles a and b, respectively, and ua and 0 are their
respective velocities immediately before the collision, and va and v1 are
their velocities immediately after the collision, then

µua = µva + v1 (11)

that is

µ =
‖v1‖

‖ua − va‖
(12)

and

(ua − va)µ = v1 . (13)

This last equation implies that the vectors ua−va and v1 are colinear,
a result that constitutes the essence of the third law of Newton. For the
unidimensional collider, Equation 12 can be rewritten with the velocity
scalars:

µ =
v1

ua − va
(14)

where ua and v1 are always positive and va, speed of the particle of proof
mass, can be either negative or positive depending on its behaviour after
the collision — bouncing back or going forward.

The determination of mass. These equations show that the third law
is also the way to ascertain the value of the coefficient called mass. Equa-
tion 12 gives the mass of an arbitrary particle using a standard particle
11 To Aristotle the force applied is the cause and in some way the velocity is the effect.

Since uniform motion in a straight line does not need any explanation, Newton
searched for the variation of uniform motion in a straight line as the required effect.

12 In the Principia, Newton defined force as change of momentum, i.e., f = dp
dt

.



(of mass 1 Kg): this value can be measured in a collision experiment.
Thus, if one of the particles is chosen as unit, then the masses of all other
particles can be determined by making them collide with the standard
particle. Consider a possible measurement map M for mass.

The inertial mass M(a) of a particle a, as determined by the collider
and velocity measurements only, is defined by Equation 14 rewritten in
the form:

M(a) =
v1

ua − va
, (15)

where ua and va are the velocities of particle a before and after the
collision, and v1 is the velocity after the collision of the standard reference
particle. Here are some simple consistency theorems:

Proposition 8. M(a) < M(b) if, and only if, the particle a of mass µ
bounces back when projected towards the particle b of mass µ′ at rest.

Proof: By Equation 7, we have that

va =
µ− µ′

µ+ µ′
ua ,

where the sign of va is decided by the difference µ − µ′. Thus, we only
have to prove that µ < µ′. But, since M(a) < M(b), we conclude

v1
ua − va

<
v′1

ub − vb
,

if, and only if,
µv1

µua − µva
<

µ′v′1
µ′ub − µ′vb

,

and, by conservation of momentum, if, and only if,

µv1
v1

<
µ′v′1
v′1

,

and, finally, if, and only if, µ < µ′. �
In a similar way, it is straighforward to prove that:

Proposition 9. M(a) = M(b) if, and only if, the particle a of mass µ
becomes at rest when projected towards the particle b with the same mass
at rest.

The basic question is: Does the CME implement a comparative concept
supporting a formal measurement M in the sense of Hempel? Does M
qualify as a measurement function? We will see that, indeed, we have
both a comparative concept and a measurement.



6 Refinement of the theory of measurement

6.1 Measuring quantities

Suppose that we wish to measure an attribute of an object of O using
real numbers. We need a map M : O → R assigning to each object a ∈ O
an attribute value M(a). Such a map cannot be chosen arbitrarily. To
qualify as a measurement in an empirical science, an experiment must be
conceived that “validates” or “witnesses” the definition. The experimental
apparatus works with the objects from O, allowing the experimenter to
compare different objects with respect to a given attribute. The outcome
of each experiment is an event that tells us whether or not the attribute
of object a is less than the attribute value of object b. Observing the
equipment, there will be an event for “yes”, an event for “no”, and an
event for “don’t know”. As we will see shortly, in our theory, “don’t
know” is an event “experiment timed out”. With time in mind, we adapt
the notation in Section 2.2: in the bipolar subset of events we replace 0
with ⊥ (“undefined”) to mark that the binary equivalence E is true.

Let us assume there is a time t ∈ N associated to each experiment. A
collection of such times constitute the schedule of the collider protocol.
In all measurement procedures in this paper, the experimenter — the
Turing machine — generates a possibly infinite sequence of binary words
{zi}i∈N. If the time schedule of oracle consultation allows, then this se-
quence converges into the unknown real ζ being measured (in its binary
expansion).

For the purpose of what follows, every number ζ can be seen as an
infinite binary string. We don’t accept infinite suffixes of 1s to denote
dyadic rationals. If a sequence is finite, then we consider an infinite num-
ber of 0s padded to its right. The concept of limit induces a topology over
the set of finite and infinite binary sequences {0, 1}ω.

Definition 13. We say that the sequence of binary words {zi}i∈N con-
verges to ζ if (a) for all i ∈ N, zi is a finite sequence, (b) for all i ∈ N, zi
is a prefix of ζ, and (c) for each prefix z of ζ, there is a i ∈ N such that
z is a prefix of zi.

Each experimental apparatus A we have explored so far is specified
by a physical theory T and is designed to measure a real number ζ. Let
A(T , ζ) denote the experimental apparatus together with the quantity.
We are able to define precisely the notion of a measurable number:13

13 Compare the context of [15] and [1, 5, 3].



Definition 14. Let A(T , ζ) be an experimental apparatus for physical
theory T and physical quantity ζ. The number ζ is measurable if the
Turing machine equipped with the physical oracle O(T , ζ) and a time
schedule can produce an infinite sequence of prefixes of ζ, {zi}i∈N, without
timing out in any query, such that

lim
i→∞

zi = ζ . (16)

In the bisection method, the infinite sequence of queries is almost such
a sequence {zi}i∈N, but not quite since each query may differ in the last
bit from a prefix of the unknown number being measured. We define the
meet operation, which allows us to identify the largest common prefix to
two given words over the same alphabet Σ:

Definition 15. Let α and β be two finite or infinite words over the same
alphabet Σ. We define the meet α u β as the finite word γ over Σ, if it
exists, such that (a) γ is prefix of both α and β and (b) if δ over Σ is
prefix of both α and β, then δ is a prefix of γ. It such a prefix does not
exist we say that the meet is undefined.

Thus, according with our previous analysis of experimental situations,
the sequence of queries involved in the bisection procedure has the follow-
ing property: if ζ is measurable, then the sequence {zi u ζ}i∈N converges
to ζ. Notice that, whenever one of the words over Σ is finite, the meet
is always defined. If the meet is undefined, we say that its size is infinite.
The following proposition is straightforward to prove:

Proposition 10. Let A(T , ζ) be an experimental apparatus for physical
theory T and physical quantity ζ. The number ζ is measurable if, and
only if, a Turing machine with physical oracle O(T , ζ) can produce an
infinite sequence of queries {zi}i∈N such that

lim
i→∞

zi u ζ = ζ . (17)

6.2 Measurement axioms with time

We begin with some properties of abstract binary relations indexed by a
real parameter “time” t > 0 on a set O.

Definition 16. A relation Et in O×O, for the time bound t > 0, is said
to be a timed equivalence relation if there is a K ≥ 1 so that
(a) Et is reflexive,



(b) Et is timed symmetric: for every a, b in O, if aEtb, then bEt/Ka,
(c) Et is timed transitive: for every a, b,and c in O, if aEtb and bEtc, then
aEt/Kc,
(d) if t < t′, then aEt′b ⇒ aEtb.

Definition 17. Two binary relations Et and Lt (t > 0) determine a
timed comparative concept for the elements of O, if
(a) Et is a timed equivalence relation,
(b) there is a K ≥ 1 so that for every a, b, c in O, if aLtb and bLtc, then
aEt/Kc,
(c) for all t > 0 and a, b ∈ O, exactly one of aEtb, aLtb, bLta holds,
(d) if t < t′, then aLtb ⇒ aLt′b.

Note that Definition 17(c) summarises the ideas of irreflexivity and
connectedness.

Note also that, although property 16(d) is kept explicitly, it can be
omitted, since it is derivable from the other properties listed in Definition
16 and those listed in Definition 17.

Proposition 11. If t < t′, then aEt′b ⇒ aEtb.

Proof: Suppose that aEt′b holds. Then aLt′b does not hold, due to property
Definition 17(c). We conclude, by Definition 17(d), that aLtb does not
hold. Then, either bLta or aEtb holds. If bLta holds, then bLt′a holds and
aEt′b cannot hold, by Definition 17(c), which is against the hypothesis.
Thus aEtb is the case. �

Now suppose we have an experimental apparatus for making measure-
ments. This takes the form of some form of comparison of two objects in O
taking place in a given time t > 0. (The time t is allowed to vary over real
values for convenience, but there would be no problem in restricting it to
rational values, or with slight modification to some formulae, integer val-
ues.) The possible outcomes for the experiment are labelled {−1,⊥,+1},
where ⊥ should be thought of as “no answer”. We will now define, for all
t > 0, binary relations Et and Lt on O by using this experiment. Later
we shall discuss when these relations obey Definition 17.

Definition 18. Whenever the experiment is done with arbitrary objects
a, b ∈ O, if the outcome in time t is event −1, then aLtb is the case, if
the outcome in time t is event is +1, then bLta is the case, and if the
outcome in time t is “no answer” (⊥), then aEtb is the case.

Definition 19. Let Et and Lt be timed comparative relations on the set O
of objects (Definition 17). Suppose there exists an experimental apparatus



to witness these relations, as in Definition 18. Then the map M : O → R
is a measurement map if

1. For all time t > 0, if aLtb holds, then M(a) < M(b).

Considering the real M(a), for the object a ∈ O, as an infinite bi-
nary sequence, we denote by M(a)�n the dyadic rational corresponding
to the prefix of size n of M(a) and by an an object from O with that
measure. Such an object an exists due to the convention of the toolbox
of standards: once specified the unit, we have access to all its multiples
and submultiples.

Definition 20. The complexity of a measurement map M : O → R,
given the timed comparative relations Et and Lt on the set O of objects,
is the map T : N→ N defined as follows:

T (n) = min{t ∈ N\{0} : anLta for some a, an∈O withM(an) = M(a)�n}.

For the collider machine experiment, the complexity of the measure-
ment map is exponential. This complexity of measurement is, indeed, a
lower bound on the time needed to get an answer from the machine, as
can be seen in the proof of Proposition 6.

Now, we introduce an extra axiom for the physical apparatus:

Definition 21. The apparatus satisfies the separation property for the
measurement map M : O → R if for every objects a and b in O, ifM(a) <
M(b), then there exists a time bound t such that aLtb.

To connect these ideas with Hempel’s axiomatisation, we use the fol-
lowing definition:

Definition 22. Given the timed comparative concept Et and Lt, for some
time bound t, we define the following relations Elim and Llim:
(a) for every a and b in O, aElimb if aEtb for every time bound t, and
(b) for every a and b in O, aLlimb if there exists a time bound t such that
aLtb.

Proposition 12. If the two relations Et and Lt define a timed compar-
ative concept (Definition 17) and the physical apparatus witnessing the
relations satisfies the separation property (Definition 21), then the two
relations Elim and Llim define a comparative concept and M is a mea-
surement map in the sense of Hempel (see Definitions 3 and 4).



Proof: We have to prove that Hempel’s axiomatization holds, which is
straightforward.

(1) Elim is reflexive: Suppose that, for some object a in O, aElima does
not hold. It means that, for some time bound t, aEta does not hold, which
is a contradiction with the fact that Et is reflexive.

(2) Elim is symmetric: Use Definition 16(b).
(3) Elim is transitive: Use Definition 16(c).
(4) Llim is transitive: Use Definition 17(b).
(5) Llim is Elim-irreflexive: Suppose that, for some objects a and b in

O, both aElimb and aLlimb hold. Then, there is a time bound t such that
aLtb. Since Lt is Et-irreflexive, we conclude that aEtb does not hold, which
is contradictory with the case that aElimb holds.

(6) Llim is Elim-connected: Suppose that, for some objects a and b in
O, aElimb does not hold. Then, there is a time bound t such that aEtb
does not hold. Consequently, since Lt is Et-connected, either aLtb or bLta,
meaning that either aLlimb or bLlima.

(7) Suppose that M(a) 6= M(b). Then either M(a) < M(b) or M(a) >
M(b). Consider the first case. By the separation property (Definition 21),
there exists a time bound t such that aLtb holds. Consequently, aEtb is
not the case and, therefore, aElimb is not the case.

(8) If aLlimb, then there exists a time bound t such that aLtb and,
consequently, M(a) < M(b).

And we are done! �

6.3 The collider as an example

Now we are in a position to prove that the CME is a measuring process
and that the mass obtained by the collision experiment is a measurement
map. We use O to denote the set of objects used in the collider experi-
ment. For the collider experiment, we measure mass using Equation 15,
which is independent of the value of the initial velocity. The vital fact to
remember is that the time texp taken to conclude the physical experiment
for masses ma and mb is bounded by (for constants A,B > 0):

A

|ma −mb|
≤ texp ≤

B

|ma −mb|
. (18)

Proposition 13. The map M , given values by Equation 15, is a mea-
surement map with exponential complexity. That is, the collider provides
a model of the timed axioms of measurement.



Proof: We start by providing the semantics of the predicates Et and Lt.
We say that two objects a and b have experimentally the same mass —
event ⊥— if when a collides with b, there is no answer from the oracle in
time t. We say that the object a has less mass than b if when a collides
with b, the object a bounces back in time t.

Note that the separation axiom provided in Definition 21 is valid
for the collider machine experiment: for every objects a and b in O, if
M(a) < M(b), that is if ma < mb, then the time needed to detect the
bouncing of object a is

t =
B

|ma −mb|
,

that is, aLtb.
The E-irreflexivity and E-connectivity follow directly from the fact

that the experimental outcomes (for a given setup) are exactly one of
{−1,⊥,+1}. The properties 16(d) and 17(d) on increasing time are true,
as a result of ±1 at time t guarantees the same result for any time t′ > t.

Let us prove that the predicate Et is a timed equivalence relation.
It is reflexive: if two copies of a are made to collide, then there is no

answer from the oracle at any time — event ⊥. Consequently there will
be no answer in time t.

It is timed symmetric: if a collides with b with no answer from the
oracle in time t, then

B

|ma −mb|
> t .

Then, if b collides with a, then

A

|mb −ma|
>
A

B
t .

Thus, aEtb ⇒ bEA/B ta.
It is timed transitive: Suppose that a collides with b with no answer

in time t, and that b collides with c with no answer in time t. Then

B

|ma −mb|
> t and

B

|mb −mc|
> t .



Since

|ma −mc| = |ma −mb +mb −mc| ≤ |ma −mb|+ |mb −mc| ,

we have

|ma −mc| <
2B
t

.

Now if a collides with c, there will be no answer in time A/(2B) t.
The proof that the predicate Lt is a transitive relation follows the

same guidelines as the proof given immediately above. If a collides with
b and bounces back in time t and b collides with c and bounces back in
time t, then

A

|ma −mb|
≤ t and

A

|mb −mc|
≤ t .

Since, in this case,

|ma −mc| = |ma −mb +mb −mc| = |ma −mb|+ |mb −mc| ,

the upper bound on the experimental time required to distinguish a and
c is

B

|ma −mc|
=

B

|ma −mb|+ |mb −mc|
≤ B

2A
t .

The complexity of the map is determined by the analysis done in the
proof of Proposition 6. �

The theory of the collider machine experiment CME as a measure-
ment device can be developped and fully axiomatized. Of course Hempel’s
timed system of axioms is not complete for the CME: many further com-
plex properties of the CME can be axiomatised. Mainly, those properties



that dissect the entanglement of the relations Et and Lt for arbitrary
values of t.

Let us give an example. In Hempel’s system, it can be proved that,
for every objects a, b, and c in O, if aLb and bEc, then aLc. In the timed
system, it does not hold that, for every objects a, b, and c in O, if aLtb
and bEtc, then aLtc. But for the collider this theorem can be replaced by
a timed one in the following form:

Proposition 14. For every objects a, b, and c in O, for every time bound
t, there is a K ≥ 2 so that the following holds: If aLtb and bEKtc, then
aLKtc.

Proof: If aLtb and bEt′c, then

t >
A

mb −ma
and t′ <

B

|mb −mc|
.

If t′ = 2B/A t then we have

|mb −mc| < (mb −ma)/2 ,

and then

mc −ma ≥ mb −ma − |mb −mc| > (mb −ma)/2 .

Then an upper bound on the time taken to distinguish a and c is

B

mc −ma
<

2B
mb −ma

<
2B
A

t .

�
Many propositions of this kind can be proved for the CME, namely in-

troducing quantifiers. They show how masses can be compared in the less
abstract timed system, where measurements take time, without further
measurements.

We can also see how the CME fails to measure with arbitrary accuracy
when used with a polynomial time limit:

Proposition 15. Let p(n) be a polynomial. For any a, an in O (n ∈
N), such that M(an) = M(a)�n, there are only finitely many n so that
anLp(n)a.



6.4 Complexity

We propose that a measurement procedure has a “computational com-
plexity” that can be derived from the intrinsic duration of the phe-
nomenon considered.

If a is the object being measured and, for all i ∈ N, ai is the object
from the toolbox of standards corresponding to the dyadic rational zi,
then we can restate Proposition 10 in the following terms:

Proposition 16. Let A(T , ζ) be an experimental apparatus for physical
theory T and physical concept value ζ. If the Turing machine with the
physical oracle O(T , ζ) and a schedule can give instructions to set an
infinite sequence of objects {ai}i∈N to be compared with object a in some
attribute, by the bisection method, without timing out in any query, then

M(a) = lim
i→∞

M(ai) . (19)

Proposition 17. If the Turing machine (experimenter) is equipped with
the bisection algorithm, then the analogue-digital collider machine can
serve as measurement apparatus for the measure of mass with complexity
exponencial in the size of the query.

Proof: The time of the experiment is exponential in the size of ziuζ, where
zi is the i-th query and ζ the unknown mass. Using the bisection algorithm
the size of the largest common prefix is |zi| up to 1 unit. Consequently,
the time computed in this way is the same complexity class (k′2kn). �

This last proposition shows that the bisection method is one of those
methods that allows the experimenter, equipped with the toolbox of stan-
dards, to measure the unknown mass with a time schedule that does not
depend on the unknown mass, although the experiment may time out
assigning the two objects in the measurement context the same mass in
the sense of relation E .

We think these last propositions give a solid ground to understand our
physical experiences of measurement and the role of the Turing machine
as experimenter.

Now we introduce what we think is the most relevant concept:

Definition 23. We say that a measurement in physical theory T has
structural complexity T if the associated measurement map M has a com-
putable complexity T in the sense of Definition 20.

Then we can define complexity classes of measurements, such as:



Definition 24. T −EXP is the class of measurements in physical theory
T that have associated measurement maps with exponential time complex-
ity, i.e., complexity 2O(n).

We can specify an open problem in measurement theory:

Conjecture 1. No reasonable physical measurement, based upon a reason-
able physical theory T , has an associated measurement map with poly-
nomial time complexity.

The SME in [9] can be considered to be “unreasonable” since its be-
haviour is not fully governed by physical laws. This is because no physical
law determines what happens in the “close vicinity” of the vertex of the
wedge (cf. [14]).

7 The non-measurable character of a physical concept

We start with a definition more general than Definition 14:

Definition 25. A number ζ is said to be measurable over a physical
theory T if there exists a Turing machine M with experimental apparatus
A(T , ζ), specified by the physical theory T , and physical oracle O(T , ζ)
which, running over unbounded time, computes a sequence of rational
approximations to (the binary expansion of) ζ.

(Compare the quotations Geroch-Hartle 3 and 5.) We are now going to
reconsider the collider experiment in Section 3. Let ζ denote the unknown
value to be measured and {zi}i∈N be the sequence of words queried by
the Turing machine.

From the sequence {ziuζ}i∈N, introduced in Section 6, we can extract
the sequence of sizes {|zi u ζ|}i∈N, which determines the lower bound of
the time needed to perform the i-th consultation of the experiment, i ∈ N.

We suppose there is a notion of physical time that belongs to the phys-
ical theory T underlying the measurement. Suppose the natural physical
T -time of the experiment has a lower bound exponential in the size of
the largest common prefix of the unknown word and the query word.
Then the sequence of lower bounds in the times needed for the consul-
tations is {2|ziuζ|}i∈N. Therefore, even if the program for the Turing ma-
chine “cheats” for some i ∈ N, by timing out some queries, an infinite
subsequence of queries has to have time constraints. The proper way to
formulate this property is via the Ω notation:



Proposition 18. Let O(T , ζ) be an oracle to a Turing machine for a
physical theory T and physical quantity ζ. Let physical T -time be τ . Let
the oracle consultation schedule be T . If the number ζ is measurable then
T ∈ Ω(τ).

Now, we make a conjecture, which we will call the BCT Conjecture,
stating:

Conjecture 2. For all reasonable physical theories T , for all reasonable
physical measurements of ζ based upon T , the natural physical T -time
τ is at least exponential in the size of z u ζ, where z is a query of the
experimenter.

Our Conjecture 2 claiming exponential in the size of the query can be
explored for the bisection algorithm. By exponential we generally mean a
law of time of the form

τ(n) = 2kn , (20)

for some value of k different from 0.
As an example, consider the speed of light of 299 792 458 ms−1. Any

attempt to prove that it is 299 792 458. 0ω ms−1 will fail, according to
our conjecture, but an attempt to prove that it is 299 792 458. 0id ms−1,
for some large i may succeed for some digit d 6= 0.

Conjecture 2 is suggested by our studies of gedankenexperimente in
a variety of physical fields, measuring length, mass, resistance, latitude,
mass of a elementary particle, and Brewster’s angle in optics. All these
experiments are fully described in [7]. The conclusion of each analysis
is the same: the time needed to establish the n-th bit of a value is at
least exponential in n. Of course, if the statement of the conjecture is
turned into a widely accepted thesis, or even a law about the process of
measurement, then there will be deep consequences, both philosophical
and physical.

The following propositions answer questions seen earlier in Section 4:

Proposition 19. There are measurable numbers that are not computable.

These are best seen through particular experiments such as [9].

Proposition 20. There are computable numbers which are not measur-
able.



Proof: Take any dyadic quantity ξ of size n and consider it measurable.
Then, the Turing machine can produce a sequence {zi}i∈N of queries such
that limi→+∞ zi = ξ. As a consequence of the concept of limit provided
by Definition 13, we know that there is an order p ∈ N such that, for
i > p, zi = ξ. For such queries zi, i > p, the time of the experiment is
infinite. �

This last Proposition 20 conspicuously challenges arguments in the
quotation Geroch and Hartle 6 (recall Section 4). A reason is this: for
Geroch and Hartle, a computable number is a priori, i.e., knowing that
a number is computable we can prove it is computable. But, in our case,
we do not know if a quantity being measured is computable or not.

We conclude that the Geroch and Hartle’s Quotation 6 (see [15]) is a
difficult one. Our interpretation is that Geroch and Hartle are making dis-
tinguishing those numbers which can a priori be known to be computable
and, consequently, measurable, and those numbers under the influence of
an experimental apparatus. Indeed, what Geroch and Hartle state in Quo-
tations 5 and 6, taken together, is that all computable numbers predicted
by physical theories are measurable. This view is acceptable when only
negative results are in context. But for the Philosophy of Physics, if it is
a refutation what we are looking for, then even this exercise of Geroch
and Hartle is not suitable.

The diference of knowing and not knowing in advance if a given quan-
tity is computable or not is entangled in the following two propositions
from [4]. The first tells us that, if we know a quantity in advance, then we
can design a schedule (using that quantity as a conventional oracle (!))
that allows the experimenter to measure the number:

Proposition 21. There are programs Nk (with integer k ≥ 1), with spec-
ified waiting times (say Tk), so that the following is true: For any non-
dyadic µ ∈ [0, 1] and any n ≥ 0, there is a k so that program Nk will find
the first n binary places of µ.

But if that quantity is not known in advance than, for most numbers,
there is a last bit that can be read. (cf. Proposition 19, stated in advance
for the purpose of clarity.)

Proposition 22. There are uncountably many ζ ∈ [0, 1] so that, for any
program P with a specified computable schedule, having access to the ora-
cle O(T , ζ)), there is an n so that P cannot determine the first n binary
places of ζ.



We note that the impression that the non-algorithmic character of
measurement is induced by the thresholds of sensitivity of the equipment
is false. In the collider machine experiment the two flags are put at a fi-
nite non-zero distance from each other: notice that the non-measurability
arises no matter how small is the distance between the two flags. Be-
sides that fact, there are uncomputable reals that are indeed measurable
irrespective to the finite distance between flags of the collider.

Thus, a number is computable if there is a Turing machine that gen-
erates a sequence of rational approximations to the number.

A number is measurable if there is a Turing machine connected to the
experiment that also produces rational approximations to that number
— for the bisection method, the sequence of queries is that sequence of
rational approximations.

The relation between the measurable and the non-measurable is as
subtle as the relation between the computable and the non-computable.
From what is non-measurable we can produce measurable numbers by
suitable encoding. The same with the non-computable. Geroch and Har-
tle stresses this fact by giving the interesting example of a computable
number made of non-computable numbers (see [15]):

M =
∞∑
n=1

3−n

s(n)
, (21)

where s(n) is the number of steps taken by the Turing machine encoded in
n to halt. This function s is itself non-computable. However, the number
M is computable. In order to approximate the number M to within error,
say ε = 0.01, it suffices to deal only with the first ten terms in the sum,
and, even for these, only either to determine s(n) or else ensure that it
exceeds 1, 000. So, given ε = 0.01, our machine merely runs the first ten
Turing machines for 1, 000 steps each one, letting s(n) be infinite for any
machine that has not by then halted.

8 Conclusions

This paper is about measurement seen from a computational point of
view. In our models of Turing machines with physical oracles, introduced
in our papers [2, 1, 5, 3, 4], we have been observing that our experiments
make measurements (e.g., in [1] and [6]).

In [12, 16, 13], we find an established theory of measurement, axiom-
atized by Hempel in [16] extended by Carnap in [13]. Campbell, in [12],



discusses the problem of measurement in experiments involving objects
with almost identical attribute values.

According to a our framework all depends upon the physical theory
chosen. For Newtonian mechanics we have shown that for some experi-
mental quantities are always measurable (see [9, 5]) whilst for others there
are quantities that are not always measurable. Our technical results can
be used to show that the task of measuring quantities in physics can be
classified by well known complexity classes. Principle 6, and the postu-
lates, lead to a deeper understanding of experimenters and experiments
which impose a theoretical and absolute limit on the measurability of a
physical quantity.

In this paper we solved two problems: we were able to strongly root
the ideas and results developed in [1, 4] in the Philosophy of Physics; and
we were able to provide a decidable theory by adding time complexity
measures into the Hempel’s system of axioms.

Edwin Beggs, José Félix Costa and John Tucker would like to thank
EPSRC for their support under grant EP/C525361/1.
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