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Consider an algorithm requesting information from an external source – an
oracle – the terminology originates with Alan Turing [7]. Emil Post [6] used
oracles to study computability.

However, suppose the external source is not a pure mathematical entity but
a physical device or environment. Suppose the requests are for measurements of
physical quantities. We call this external source a physical oracle. Algorithms
with physical oracles may be found in measurement experiments, and in con-
trolling machines. We ask: What is the computational power of adding a physical
oracle? How does the computational theory depend upon the physical theories
and models?

In [2,3] we developed a computability and complexity theory for physical
oracles. The computational classification needed non-uniform complexity classes
[1], especially P/ log? and BPP// log? [5]. Using case studies, we formulated
axioms expressing properties common to wide classes of physical systems [4].

Here we review physical oracles and report new results broadening their scope
by using non-deterministic physical systems. Physical oracles with probabilistic
theories we call stochastic physical oracles. We examine examples of three types
of non-deterministic systems, those that that are physically nondeterministic, as
in quantum phenomena; physically deterministic but whose physical theory is
non-deterministic, as in statistical mechanics; and physically deterministic but
whose computational theory is non-deterministic caused by error margins. We
prove:

Theorem 1. Let SPO be the axioms for stochastic physical oracles. Let P be a
physical system whose behaviour depends upon a physical quantity or parameter
σ. Suppose P satisfies the axioms of SPO. Then: a set A ⊂ {0, 1}? is decidable
in polynomial time by a Turing machine with physical oracle P and unknown
parameter σ if, and only if, A ∈ BPP// log?.
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4. Edwin J. Beggs, José Félix Costa, and John V. Tucker. Axiomatizing physical
experiments as oracles to algorithms. Phil. Trans. Royal Soc., Ser. A (Math.,
Phys. and Eng. Sci.), 370(12):3359–3384, 2012.
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