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MICHAEL DETLEFSEN

POINCARE AGAINST THE LOGICIANS*

ABSTRACT. Poincaré was a persistent critic of logicism. Unlike most critics of logicism,
however, he did not focus his attention on the basic laws of the logicists or the question
of their genuinely logical status. Instead, he directed his remarks against the place
accorded to logical inference in the logicist’s conception of mathematical proof. Following
Leibniz, traditional logicist dogma (and this is explicit in Frege) has held that reasoning
or inference is everywhere the same - that there are no principles of inference specific
to a given local topic. Poincaré, a Kantian, disagreed with this. Indeed, he believed that
the use of non-logical reasoning was essential to genuinely mathematical reasoning
(proof). In this essay, I try to isolate and clarify this idea and to describe the mathematical
epistemology which underlies it. Central to this epistemology (which is basically Kantian
in orientation, and closely similar to that advocated by Brouwer) is a principle of epistemic
conservation which says that knowledge of a given type cannot be extended by means of
an inference unless that inference itself constitutes knowledge belonging to the given
type.

1.

In the philosophy of mathematics, Poincaré is probably best known for
his disagreement with the logicists — in particular, with Russell, with
whom he carried on a running debate in the early years of this century.’
Unlike the usual criticisms of logicism, however, Poincaré’s critique did
not focus on the question of the status of the ‘basic laws’ of the logicist’s
systems, finding difficulties in seeing them as genuinely logical prin-
ciples. Rather, it was dominated by the quite different idea that there
is little, if any, place for logical inference in mathematical proof — such
inferences being epistemically too colorless to be a part of any genuinely
mathematical reasoning. Logical inference, by its very nature, applies
everywhere, and so neither requires nor reflects any distinctively mathe-
matical knowledge; and, for that reason, it cannot be expected to serve
as means of extending genuinely mathematical knowledge.

Poincaré’s defense of these views rested on an appeal to what he
took to be a datum of mathematical ‘common sense’. Anyone with
mathematical experience would, he maintained, clearly perceive a large
and important difference between the epistemic condition of one whose
reasoning is based on the topic-blind steps of logical inference (e.g.,
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modus ponens and the like), and one whose reasoning is based on
topic-specific penetration of a particular mathematical subject. The
mathematician’s inferences stem from and reflect a knowledge of the
local “‘architecture” (Poincaré’s term) of the particular subject with
which they are concerned, while those of the logician represent only a
globally valid, topic-neutral (and, therefore, locally insensitive!) form
of knowledge.” Using Poincaré’s own figure, the “logician” is like a
writer who is well-versed in grammar, but has no ideas.’

This, in brief, is Poincaré’s view of the place of logic in mathematical
reasoning. But though interesting and distinctive, and an absolutely
central part of Poincaré’s philosophy of mathematics, it has never been
developed in any systematic way. The chief task of this paper is to
take steps toward remedying this deficiency, with the hope that, the
philosophical basis of Poincaré’s views having been more clearly formu-
lated, their interest might be more deeply appreciated, and their plausi-
bility and importance more accurately judged.

The views offered here differ sharply with other recent attempts —
most notably, that by Warren Goldfarb in ‘Poincaré Against the Logic-
ists’* ~ to elaborate Poincaré’s philosophical ideas. Goldfarb claims that
what marks Poincaré’s conception of foundations and sets it apart from
the rival conception of the logicists is its concern with providing a
psychologically realistic account of mathematical knowledge and rea-
soning; that is, an account of mathematical knowledge which describes,
in a psychologically realistic way, how it is that we come to have it.

This attempt to make psychological plausibility the focus of the dis-
pute between Poincaré and the logicists is tempting not least because
the preeminent logicists, Frege and Russell (and, to a lesser extent,
Cantor), are well known for their anti-psychologistic bent in foun-
dations. Though quite different from one another, they nonetheless
both held views which agree in seeing the task of mathematical episte-
mology as set by metaphysics rather than psychology. In Russell’s case
it is a metaphysics of objects and propositions (cf. Russell 1903, p.
427). In Frege’s case it is a metaphysical ordering of truths, which is
seen as capturing the relations of (objectively metaphysical) “‘sufficient
reason’” obtaining among them.” In neither case is psychological plausi-
bility anything but a ‘red herring’; mathematical epistemology, on their
views, is properly obligated to facts of mathematical being, not to facts
of mathematical believing.

But though there are serious differences between the logicist and
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Poincaréan conceptions of the foundational enterprise (some of the
more important of which will be discussed in what follows), we do not
see these differences as centering on the question of whether foun-
dations should be psychologically realistic. Thus, we disagree with
Goldfarb’s interpretation of Poincaréan foundations. As we see it,
Poincaré’s viewpoint is characterized not by a concern for the psycho-
logical differences between the Poincaréan prover and his ‘logician’
counterpart but, rather, by a concern for their epistemological differ-
ences. Hence, the issue is not whether a mathematical epistemology
yields a psychologically accurate description of the mathematical
knower but, rather, whether it provides a plausible account of the
epistemological differences separating the knowledge of the mathema-
tical knower from that of the ‘logician’. Such, at any rate, is the view
that we will be defending in this essay.

Structurally, what we end up with is an epistemology centering on
two complementary principles. One of these is a principle of epistemic
typification according to which knowledge is to be seen as divided into
types, but types whose division does not follow the divisions between
subject-matters that are commonly used to demarcate mathematics from
non-mathematics.” The other is a principle of epistemic conservation
which says, in effect, that inference cannot be epistemically ‘creative’ —
that is, that it cannot give rise to knowledge belonging to a given
type unless it itself constitutes knowledge of that type. In the case of
mathematical knowledge, this second principle implies that if reasoning
to a mathematical conclusion from a group of premises is to be capable
of producing mathematical knowledge of that conclusion, then, in ad-
dition to the premises being mathematically known, it must also be
the case that the inferences used in conducting the proof themselves
constitute mathematical knowledge. In Poincaré’s view, it is this latter
condition that is violated by the use of purely logical inference in
mathematical reasoning.

Adopting such a view concerning the place of logical inference in
mathematical proof has serious consequences, among which the clash
with standard views of rigor is among the more noticeable and impor-
tant. One of the celebrated triumphs of the ‘logicization’ of mathema-
tical reasoning by Frege, Peano, and Russell and Whitehead was the
new and seemingly unimpeachable standard of rigor that it brought
with it; a standard which continues to guide foundational work to the
present day. On this approach, a rigorous proof is one in which all
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substantive (i.e., topic-specific) information has been driven out of the
inferences and into the axioms, thence to be explicitly registered in the
premises of the proofs in which it is used. The end result — or such, at
any rate, is the pious hope - is a clear and accurate record of the beliefs
upon which a given conclusion is based.

This end is, however, achieved only by reducing all inferences to
logical ones since it is only such inferences which, being topic-neutral,
cannot themselves contain any substantive (i.e., topic-specific) infor-
mation. Logic-sized steps of inference are thus exactly what rigor seems
to demand, since it is only through using such steps that all substantive
information used in a given proof is forced to be explicitly declared in
the premises.

This traditional conception of rigor thus depends on there being
globally valid, topic-neutral forms of inference in terms of which the
inferences pertaining to a given subject can be cast. Without this, we
run the risk of smuggling undeclared — and, theretore, unrecognized —
information into our proofs. The Poincaréan is thus challenged to show
how rigor can be achieved when the globally valid, topic-neutral infer-
ences of logic are banished and replaced with the locally valid, topic-
specific inferences of the ‘mathematician’.

His response is as radical as it is simple. Rigor will be achieved not
by the elimination of logical or informational gaps separating premises
from conclusions (hence, the elimination of substantive inference) but,
rather, by the elimination of gaps in our mathematical understanding
(and, hence, the elimination of inferences in which the premises do not
constitute a good mathematical reason for the conclusion).® Seen in this
way, an inference is rigorous when, and only when, it reflects genuine
mathematical understanding; and such a view is the very antithesis of
the standard one, since it requires inference to be substantive rather
than logical in order to be rigorous.

This then, in outline, is the argument of the present paper. Its chief
objectives are the elaboration of the ideas which we take to underlie
the Poincaréan viewpoint in the philosophy of mathematics.

2. THE ‘INSOLUBLE CONTRADICTION’ OF
MATHEMATICAL KNOWLEDGE

In a manner reminiscent of Kant’s opening remarks to The First Part
of the Transcendental Problem of the Prolegomena,9 Poincaré opens
Science and Hypothesis with these words:
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The very possibility of the science of mathematics seems an insoluble contradiction. If
this science is deductive only in appearance, whence does it derive that perfect rigor no
one dreams of doubting? If, on the contrary, all the propositions it enunciates can be
deduced from one another by the rules of normal logic, why is not mathematics reduced
to an immense tautclogy? The syllogism can teach us nothing essentially new, and, if
everything is to spring from the principle of identity, everything should be capable of
being reduced to it. Shall we then admit that the enunciations of all those theorems which
fill so many volumes are nothing but devious ways of saying A is A? (Poincaré 1902, p.
31)

There are, however, some important differences between Kant and
Poincaré. Both recognize what might be called the ‘epistemic substan-
tiveness’ of mathematics (i.e., the fact that it constitutes a significant
and substantial body of knowledge) as a datum for mathematical episte-
mology. However, while for Kant it is the “apodeictic certainty” of
mathematics that is presented as the competitor of epistemic substan-
tiveness, for Poincaré it is its ‘““perfect rigor”.

A closer reading, however, raises the possibility that Poincaré was
not so much intending to pose a dilemma (between epistemic substan-
tiveness and perfect rigor) for mathematical epistemology generally as
he was to give a critique of one particular form that such an epistemol-
ogy had taken; namely, that of a Leibniz-style logicism.'® For though
what Poincaré presents as contradictory are the claims that

(D Mathematics is perfectly rigorous,
and
(I1) Mathematical theorems are not merely logical truths or
tautologies,

these claims are contradictory (even loosely speaking) only if (I) is
taken to imply something which it clearly does not; namely, that the
theorems of mathematics are all tautologies. In truth, what (I) seems
to require is not that all theorems of mathematics be logical truths but,
rather, that all inferences in a mathematical proof be logical inferences.
Thus, the second question which Poincaré asks in the above-quoted
remark (viz., “If all the propositions it enunciates can be deduced from
one another by the rules of formal logic, why is not mathematics
reduced to an immense tautology?’’), which is supposed to have no
(ready) answer, would actually appear to have an easy one: namely,
“Because the axioms with which the deductions begin are not them-
selves logical truths”. It would not, therefore, appear to have the force
that Poincaré wanted it to have.
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Is Poincaré’s ‘insoluble contradiction’ based on a simple-minded fail-
ure to recognize this elementary point? The paragraph directly succeed-
ing the one quoted above suggests that this is not so."’

Without doubt, we can go back to the axioms, which are the source of all these reasonings.
If we decide that these cannot be reduced to the principle of contradiction, if still less
we see in them experimental facts which could not partake of mathematical necessity,
we have yet the resource of classing them among synthetic a priori judgements. This is
not to solve the difficulty, but to baptize it; and even if the nature of synthetic judgements
were for us no mystery, the contradiction would not have disappeared, it would only
have moved back; syllogistic reasoning remains incapable of adding anything to the data
given it; these data reduce themselves to a few axioms, and we should find nothing else
in the conclusions.

It was thus clear to Poincaré that the inference from the given fact
that mathematics is perfectly rigorous to the further assertion that
mathematical theorems are tautologies can be blocked by adopting the
position, open to non-logicists if not to logicists, that the axioms are
not tautologies. Still, he insists, the problem he has in mind would not
be avoided by such a move. This is so, he explains, because even if
(contrary to logicism) it were granted that the axioms are not logical
truths, one still faces the problem of explaining how the theorems of
mathematics could constitute a genuine extension of the axioms if the
only principles of inference used are such as have a purely logical
character. Poincaré’s contention, then, is that, if only purely logical
inferences are used in a proof, knowledge thus gained of the theorem
proven cannot constitute extensions of whatever mathematical knowl-
edge might be represented by one’s knowledge of the axioms used to
prove it. Yet, despite this, he believed that the conclusions of mathema-
tical proofs typically do represent epistemic extensions of their prem-
ises. Consequently, he was led to conclude that not all the inferences
belonging to a typical mathematical proof can be of a purely logical
character.

Where Poincaré saw a genuine contradiction, then, is between the
following two principles.

IT) All the inferences used in mathematical proof are of a purely
logical character,

and

(Ir") Conclusions of mathematical proofs can, and often do, con-
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stitute extensions of the mathematical knowledge repre-
sented by the premises.

The conflict between (1) and (II') gives rise to a like conflict between
(I) and (II') only if (I) is taken to imply (I'). This, however, Poincaré
denied (cf. Poincaré 1908, ch. III (p. 385 in the Halsted translation)),
recommending instead an alternative conception of mathematical rigor
according to which it consists in the lack of ‘gaps’ in mathematical
understanding. One need have no fear of missing elements in a mathe-
matical inference provided that one grasps the mathematical reason
behind it. Mathematical reasoning can thus proceed in larger-than-
logic-sized steps to the extent that mathematical understanding permits
it to.

Adopting this non-logical conception of rigor'? allowed Poincaré to
retain (I), which he held to be true, while rejecting (1'), which he held
to be false. According to Poincaré, the falsehood of (1') is evident from
the fact that, were it to be true

no theorem could be new if no new axiom intervened in its demonstration; reasoning
could give us only the immediately evident verities borrowed from direct intuition; it
would be only an intermediary parasite, and therefore should we not have good reason
to ask whether the whole syllogistic apparatus did not serve solely to disguise our
borrowing. (Poincaré 1902, p. 31)

Since, however, mathematical reasoning can, and typically does, yield
new knowledge without the intervention of new axioms, it follows that
(I') is false. Hence, mathematical reasoning must typically make use
of inferences that are not purely logical in character. In his own words:

Mathematical reasoning has of itself a sort of creative virtue and consequently differs
from the syllogism. (Poincaré 1902, p. 32)

In Poincaré’s view, then, the non-logical character of mathematical
inference is necessary for the explanation of (II'), which he accepted
as a datum for mathematical epistemology.

The apparently ‘insoluble contradiction’ of which Poincaré speaks in
the opening passage of Science and Hypothesis is thus not to be taken
as representing a conflict between (I) and (II), though this might at
first sight appear to be the gist of his misstated question inquiring how
mathematics could be anything but an immense tautology, if, as the
logicists would have it, all the propositions of mathematics were de-
duced from one another by purely logical reasoning. Nor is it to be
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confused with the conflict between (I') and (II'), which Poincaré be-
lieved to be entirely genuine and unresolvable. Rather, it is that which
exists between (I) and (II'), both of which Poincaré held to be true,
and whose compatibility he sought to make plain through his rejection
of the ‘logician’s’ conception of rigor in favor of one which emphasizes
the importance of mathematical rather than logical acumen.

3. THE NATURE OF MATHEMATICAL PROOF

What Poincaré primarily was concerned to challenge, then, was not
just logicism but, rather, the ‘logicization’ of mathematical proof -
by which we mean the reduction of all inferences occurring within a
mathematical proof to logical inferences.'> He believed that there are
distinctively mathematical forms of inference, of which perhaps the
clearest and most important is mathematical induction.' He believed,
moreover, that realizing this fact is the key to sustaining the Kantian
observation concerning the epistemic ‘creativity’ of mathematical proof.
These views brought him into sharp conflict with the logicists, who
believed not only that such logicization is necessary for the optimal
form of rigor, but also that rational thought is essentially homogeneous
or non-modular (i.e., non-local) in character. Such a doctrine, of
course, implies that mathematical reasoning — including reasoning by
mathematical induction - is essentially the same as all other thought
and, so, at bottom, purely logical in character. As Frege put it:

Thought is in essentials the same everywhere: it is not true that there are different kinds
of laws of thought to suit the different kinds of objects thought about . . ..

The present work will make it clear that even an inference like that from »n to n + 1,
which on the face of it is peculiar to mathematics, is based on the general laws of logic,
and that there is no need of special laws for aggregative thought. (Frege 1884, pp. I1I-
V)

Logicism thus seeks to do away with ‘local’ differences in reasoning.
According to it, such differences are superficial, and disappear once
one penetrates sufficiently deeply into the basic nature of the thought
in question. Thus, at the epistemologically most important and re-
vealing levels of depth, what is remarkable about mathematics is its
homogeneity with the rest of rational thought — not the ‘local’ character
of its forms of reasoning.

This theme of homogeneity also figures prominently in the thought

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



POINCARE AGAINST THE LOGICIANS 357

of Frege’s forerunner, Leibniz, who took the view that mathematical
truths are nothing but disguised forms of logical identities, and that
their proofs should therefore be nothing but the analytical ‘unwindings’
(by application of definitions) of concepts which trace the theorem
proved back to the elemental and paradigmatic cases of conceptual
containment — namely, analytical truths of the form ‘A is A’.

Frege refined this viewpoint both by enriching the assumed logical
basis and by restricting its scope. He divided mathematics into two
parts: a ‘science of number’, or ‘arithmetic’, on the one hand, and a
science of spatial intuition, or geometry, on the other; and he distin-
guished both of these from empirical science. His logicist claim was then
focused exclusively on the arithmetic part. In the words of paragraph 14
of the Grundlagen:

Empirical laws hold good of what is physically and psychologically actual, the truths of
geometry govern all that is spatially intuitable, whether actual or product of our fancy.
The wildest visions of delirium, the boldest inventions of legend and poetry, where
animals speak and stars stand still, where men are turned into stone and trees turn into
men, where the drowning haul themselves out of swamps by their own topknots ~ all
these remain so long as they remain intuitable, still subject to the axioms of geometry.
Conceptual thought alone can after a fashion shake off this yoke, when it assumes, say,
a space of four dimensions or positive curvature . . . . For purposes of conceptual thought
we can always assume the contrary of some one or other of the geometrical axioms
without involving ourselves in any self-contradiction when we proceed to our deductions,
despite the conflict between our assumptions and our intuition. The fact that this is
possible shows that the axioms of geometry are independent of one another and of the
primitive laws of logic, and consequently are synthetic. Can the same be said of the
fundamental propositions of the science of number? Here we have only to try to deny
any one of them, and complete confusion ensues. Even to think at all seems no longer
possible. The basis of arithmetic lies deeper, it seems, than that of any of the empirical
sciences, and even that of geometry. The truths of arithmetic govern all that is numerable.
That is the widest domain of all; for to it belongs not only the actual, not only the
intuitable, but everything thinkable. Should not the laws of number, then, be connected
very intimately with the laws of thought? (Frege 1884, pp. 20-21)"

Frege’s view of the basic laws of arithmetic as being logical in character
is thus made plain by his insistence that denial of an arithmetic law
results in a global failure of rational thought.

Such a view, however, not only asserts a basic homogeneity of arith-
metic thought with the other areas of rational thought, but also requires
a homogeneity of the laws of logic with each other! For it demands
that there be no subsystem of the basic laws that is both conceptually
independent of the remaining laws and also strong enough to deserve

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



358 MICHAEL DETLEFSEN

to be called a body of rational thought. Thus, execution of Frege’s
logicist program would clearly require more than what logicism is com-
monly understood to require: namely, the location of a set of principles
basic enough to be regarded as laws of rational thought and powerful
enough to imply the laws of arithmetic. It would require as well either
that there be no substantial independence or ‘separability’ among the
basic logical laws, or that substantially all of them are required for the
derivation of each and every law of arithmetic. Otherwise, there would
be a threat of heterogeneity within the basic laws themselves. I am not
sure that Frege saw this as clearly as he should have (although it may
be what he had in mind in his otherwise curious insistence that the
basic laws of thought be kept to a ‘small’ number (cf. Frege 1884,
section 90; Frege 1967, p. 2)).'° But regardless of whether Frege saw
it, it is surely a serious concern for the logicist.

The basic laws of thought identified by logicism, then, must all be of
such a character as to qualify them as fundamental principles of rational
thought. And it is precisely this which produces the basic conflict be-
tween Poincaré and the logicists. 7 For, as stated above, Poincaré’s view
was that mathematical thought possesses its own distinctive principles of
reasoning which are not fundamental principles of rational thought per
se but, rather, principles of a more localized logic.'® Furthermore, he
believed that knowledge of such locally distinctive patterns of reasoning
1s essential to genuine mathematical knowledge, while the logicists
believed that the deepest, most genuinely mathematical knowledge is
that which consists in a grasp of the reduction of mathematical truths
to their logical roots and, hence, to principles whose very essence is
their global validity.” Thus, there is a deep and profound conflict
between the epistemological ideals of Poincaré and those of the logic-
ists. As suggested earlier, however, this conflict centers not on the
question of whether foundations are to be psychologically realistic but,
rather, on the question of whether rational thought is homogeneous
(whether, that is, sufficient reason in mathematics comes in one or
many different varieties).

It is important for our purposes, however, that Poincaré’s basic dis-
agreement with logicism not be confused with that which typifies much
of the more recent literature on the subject and takes as central the
question whether the axioms of the proposed logicist schemes (in parti-
cular, axioms which postulate the existence of things — for example,
infinite sets) are truly logical in character. For, as was noted in the
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previous section, Poincaré expressly disclaimed this as his main concern
(cf. Poincaré 1902, pp. 31-32), and focused on the methods of inference
rather than on the axioms.”® Moreover, even there his point was not
what one might expect — namely, that the inferences used are not purely
logical in character. Rather, it was quite the opposite; namely, that
they are purely logical, and for that very reason cannot be used to
produce conclusions that constitute an extension of the mathematical
knowledge represented by the premises.

Verification [which is Poincaré’s word for logical proof] differs from true demonstration
precisely because it is purely analytic and because it is sterile. It is sterile because the
conclusion is nothing but the premises translated into another language. On the contrary,
true demonstration is fruitful because the conclusion here is in a sense more general than
the premises. (Poincaré 1902, p. 33; brackets mine)

This may make it sound as if the point is this: a logical transform A(S)
of a sentence S is just like a definitional transform of S. Definitional
transforms are, of course, conservative in a strong sense; that is, the
application to S of a definition 6 of some expression contained in § can
only produce a sentence 8(S) that expresses the same proposition as
that expressed by S. Hence, if logical inference is essentially definitional
transformation (that is, if the conclusion of an analytic inference is
nothing but the “premises translated into another language’’), then the
application to S of a logical form of inference A must result in the
production of a sentence A(S) which expresses the same proposition as
that expressed by S. This being so, logical inference would not be
capable of extending knowledge since it could not produce a conclusion
expressing a different proposition from that expressed by the prem-
ise(s).?!

Such an argument might apply to a Leibnizian form of logicism which
holds that the truths of mathematics are derivable from logical identities
sheerly by application of the appropriate definitions. It would not,
however, count against the types of logicism that Frege and Russell
advocated, since they explicitly allowed for forms of inference whose
conclusions are (or express) different propositions from their premises,
and Russell even insisted on the synthetic character of logic.”> More-
over — and this is the important point — Poincaré’s aim was not to
establish that logical inference is incapable of yielding any epistemic
extension of knowledge whatsoever. Rather, it was that it could not be
expected to yield an extension of genuine mathematical knowledge.
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Thus, the epistemic impotence or non-productivity that Poincaré as-
cribed to logical inference was specific rather than general, applying
only to its use as a means of extending mathematical knowledge. Like
Kant before him, then, Poincaré, too, was free to admit that the con-
clusions of logical inferences might be buried so deeply in their premises
as to make them candidates for new knowledge (of a non-mathematical
variety) when retrieved through analysis.”” Thus, to repeat, his point
was not that logical inference is epistemically fruitless simpliciter, but
rather only that it is fruitless as a means of extending mathematical
knowledge.

Hopefully, these remarks will help guard against misunderstanding
by distinguishing the Poincaréan objection to logical inference from
others with which it might be confused. These possible confusions
having now been noted, let us turn to the more positive task of de-
veloping a few of the key ideas of this Poincaréan viewpoint.

Its cornerstone is the anti-logicist doctrine mentioned earlier; namely,
the division of rational thought into irreducibly heterogeneous local
domains, each with its own distinctive ‘logic’, if you will. This heteroge-
neity occurs, moreover, not only at the level of the axioms or first
truths of mathematical thought, but also at the level of inference. Thus,
Poincaréan heterogeneity is more thoroughgoing than that which would
arise solely from those ‘pockets’ of intuition used to secure knowledge
of the first truths or axioms of a body of mathematical thought. It
reflects as well the use of intuition in inference, the effect of which is
to induce a distinctive logic on a given local domain of thought, thus
permitting — indeed obliging — the reasoner to proceed by means other
than globally valid steps of inference. Thus, we are reminded once
again that Poincaré was not so much opposed to logicism as to the
logicization of mathematical proof. For even if the logical status of the
logicist’s axioms were to be established, this would not provide a way
around Poincaré’s objection to the use of logical inference in mathema-
tical proof.**

But, if rational thought is thus heterogeneous, what is it that creates
this local orientation? One thing Poincaré suggests is the need we have
for epistemic condensers — that is, devices which serve to “‘abridge our
reasonings and our calculations” (cf. Poincaré 1908, p. 440) by packing
a whole series of what would be logical inferences into the space of a
single (non-logical) inference and thus relieving us of the burden of
having our knowledge depend on the completion of the cumbersome
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unabridged logical reasoning. Such condensation signifies — and may
even make possible — a grasp of the ‘architecture’ of a subject, some-
thing which Poincaré regarded as an absolutely indispensable ingredi-
ent of any truly scientific understanding of a given domain of inquiry.
He introduced this notion by means of analogy in the following way:

Our body is formed of cells, and the cells of atoms; are these cells and these atoms
then all the reality of the human body? The way these cells are arranged. whence results
the unity of the individual, is it not also a reality and much more interesting?

A naturalist who never had studied the elephant except in a microscope, would he
think he knew the animal adequately? It is the same in mathematics. When the logician
shall have broken up each demonstration into a muititude of elementary operations, all
correct, he still will not possess the whole reality; this I know not what which makes the
unity of the demonstration will completely escape him.

In the edifices built up by our masters, of what use to admire the work of the mason
if we cannot comprehend the plan of the architect? Now pure logic cannot give us this
appreciation of the total effect; this we must ask of intuition. (Poincaré 1908, p. 436)*

The epistemic condensation represented by a given non-logical local
inference thus signifies not so much a gain in efficiency (though that,
too, may be part of its importance) as a grasp of the contribution that
the result thus inferred makes to some larger enterprise to which the
given local domain of inquiry belongs. Or, perhaps better, it signifies
a grasp of how the movement from premises to conclusion contributes
to the ‘development’ of some architectural theme of the local subject-
matter. In short, it marks the presence of a comprehending ‘universal’
(viz., what we are calling a plan or architectural theme of the local
domain in question) in the ‘differences’ (viz., the states of its develop-
ment signified by the premises and the conclusion, respectively) through
which it persists.*®

Seen in this way, a mathematical inference I is composed of three
elements: (i) a universal, U; r, which expresses an architectural theme
of the local theory T to which I belongs, and which serves as the
modulus of comparison for the premises and the conclusion of I; (ii) a
premise-set, p, which marks a certain ‘position’ or ‘stage’ oy, in the
development of U; 7; and (iii) a conclusion, ¢, which marks a ‘subse-
quent’ position or stage of development oy, of U, r. Consequently,
two inferences I and I', expressed in the terms of two theories T and
T', are the same only when U; 7= Ur 1, Oup) = 0up, and oy =
ouey->. And mathematical inferences will typically be distinct from
logical inferences, since they will be based on different kinds of univer-
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sals. Thus, a theory of mathematical inference, should one exist,?®
would consist in a specification of the various universals or architectures
that serve to organize or unify mathematical thinking and an account
of the ways in which the universals in this restricted class affect the
differences through which they persist. Likewise, a theory of logical
inference (assuming that there would be a point to allowing for such a
category of inferences) would consist in a specification of a class of
cognitive architectures that pertain to topic-neutral reasoning, together
with an account of how they affect the differences through which they
persist.”®

Theories of mathematical and logical inference would thus stand side-
by-side, rather than in some vertical relationship (signifying subsump-
tion of the former by the latter) to one another. And, it is unlikely that
there would be anything like a general theory of inference, since it is
doubtful that there is sufficient in common among all effects of all
universals on the differences through which they persist to give rise to
anything rich and interesting enough to be called a general theory of
inference.® This is, of course, just a way of articulating the Kantian,
anti-logicist theme of Poincaréan epistemology sounded earlier;
namely, that rational thought is essentially heterogeneous rather than
homogeneous.

The difference between mathematical and logical inference, on this
view, is thus one that centers on the choice of universals or architectures
under which the premises and the conclusion are to be united: a mathe-
matical inference being one which unites premises and conclusion as a
‘development’ under a mathematical architecture or theme, and a logical
inference being one which unites premises and conclusion as a ‘develop-
ment’ under a logical architecture (if such there be). Our earlier use of
the metaphor of ‘size’ is therefore to some extent misleading. The
difference between logical and mathematical inference is not essentially
one of ‘size’ but, rather, of over-arching architecture. Size enters only
because the desired topic-neutrality of logical inference forces it to
forego appeal to any topic-specific architecture and thus reduces its size
to one that is dictated not by a topical architecture but, rather, by a
semantical criterion used to individuate propositions generally (since,
without a topic-specific architecture to appeal to, all that is left to
‘mark’ inferential movement is semantical change).

The essential distinction between mathematical and logical inferences
is thus not well got at by appealing, as Poincaré himself did, to a
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supposed distinction between analytic and synthetic inference which
treats the former as inference in which the conclusion is ‘contained in’
the premises, and the latter as inference in which the conclusion ‘goes
beyond’ the premises. On the view sketched above, all inference is
synthetic, since it all involves a ‘putting together’ of the premises and
conclusion of an inference in such a way as to see the movement
from the former to the latter as a ‘development’ of an architecture.>
Likewise, all inference is analytic since it involves seeing how the
conclusion can be extracted from the premises as a ‘development’ of
the architecture in which they are embedded. Thus, a conclusion’s
constituting a development of an architecture with respect to a set of
premises is sufficient to make it both go beyond and be contained in
them.

Hopefully, this account of inference helps clarify the basis for the
principle of epistemic conservation which, as noted at the outset of this
paper, is the chief structural element of Poincaré’s epistemology of
proof. According to that principle, an inference from p to q cannot be
used to extend mathematical knowledge from p to q unless it itself
constitutes mathematical knowledge. The basis for that principle, on
the present view, is the fact that before an inference from p to q can be
counted as truly mathematical, it must first be fitted into a mathematical
architecture. Knowledge of this architecture is the quintessential form
of mathematical knowledge. Hence, it is clear both that and why the
principle of epistemic conservation holds under the conception of infer-
ence sketched here. And, because of that, it is also clear that it is
equipped to accommodate Poincaré’s basic ‘data’ for mathematical epis-
temology: namely, the seeming differences between the epistemic con-
ditions of the logician and the mathematician, and the relative scarcity
of mathematical as opposed to logical expertise.

So far, we have only described the ‘universals’ or ‘architectures’,
which are the key elements of the Poincaréan conception of proof, in
terms of their epistemic function or role, which is that of dividing up
mathematical thinking into stages or positions and thence to (partially)
order those stages into something that can be regarded as a ‘develop-
ment’ (i.e., a potential continuation of thought that presupposes a goal
and a notion of what it is for that goal to be approached). But, what
is it to have knowledge of such an ordering of a potential body of
mathematical thought? This is a difficult general question, and one that
we can only partially answer here. However, one thing seems sure, and
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that is that the knowledge in question is not to be seen as consisting
merely in a knowledge of the specific proofs and theorems that would
constitute a ‘development’ of the area of thought in question. Grasping
an ‘architecture’ is not a matter of seeing the specific results subsumed
under it.

Does it, then, consist simply in an ability to tell of a given proof, when
presented with it, whether or not it contributes to the development of
the field in question? Seemingly not, since having a grasp of an architec-
ture is supposed to function not only to control the mathematician’s
reactions to possible proofs of which she may become aware, but also
to guide her in the discovery of proofs which contribute to the develop-
ment of the field. Hence, Poincaréan architectures are to serve not only
as standards with which our epistemic choices are to accord, but also
as guides which direct those choices.*

Knowledge of an architecture is thus something like knowledge of a
strategy for playing a game, though not knowledge which presupposes
a complete knowledge of how to get from one’s present circumstances
to the goal. It thus presupposes (i) the having of a goal, and the ability
both to (ii) determine of a given course of proof-activity whether or
not it is in conformity with that goal, and (iii) to discover particular
proof-activities that are in conformity with it.

Thus, mathematics may be seen as a combination of special goals
and special strategies for attaining them. Still, it is no game. In part
this is no doubt due to the ‘seriousness’ of its overall goal as a science —
namely, the development of our epistemic holdings. But, even more,
it may be due to the fact that the strategies of mathematics have a sort
of regulative status that strategies in games do not generally have. In a
game, it is not strategies but rules and goals that have regulative status.
I cannot be said to be playing chess if I move my bishops in straight
lines, or if I adopt as my goal the mating of my own king. I can,
however, play it without having a good strategy for mating my op-
ponent’s king. Playing the game well requires the employment of a
good strategy; playing the game at all does not. To play the game at
all requires only that I operate within the boundaries of the rules and
that I make an appropriate choice of goals; it does not require that I
make use of a good strategy.

On the Poincaréan view of mathematics, however, things are differ-
ent. There, the strategies do have regulative force. They are rules. Not
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to employ a mathematical strategy (i.e., a strategy which embodies
some genuine mathematical — as opposed to general, multi-purpose —
insight) is simply to fail to do mathematics at all. One can, of course,
do mathematics less well than it might be done — and also less well
than others actually do do it. One can, perhaps, even do it poorly —
though that’s a trickier matter.>® But this only means that not all
genuinely mathematical strategies are on a par with each other as means
of pursuing a given mathematical goal, and that some of them might
even be downright bad.>* It does not controvert the basic claim that,
in mathematics, strategies have regulative status.

None of this should, of course, be taken as implying that without a
grasp of a mathematical architecture there can be no inferential exten-
sion of any kind of knowledge (even knowledge of mathematical propo-
sitions). That would be both rash and incorrect. Rather, what we have
been arguing is that without a grasp of a mathematical architecture
there can be no inferential extension of mathematical knowledge. Infer-
ence, as we have presented it, is fundamentally a case of similarity
through change. Moving from premises to conclusion brings a change;
however, if the inference is to be valid, the premises must somehow
be ‘reflected’ in the conclusion and thus persist through the transition
to the conclusion. Such binding of premises to conclusion is basic to
anything that truly is to count as inference; and it is the particular ‘way’
or ‘mode’ in which the premises are reflected in the conclusion (e.g.,
logically, mathematically, etc.) that determines what kind of inference
an inference is.

In the Poincaréan epistemology that we have been sketching here,
the similarity through change of truly mathematical inference is to be
accounted for by subsumption of the premises and conclusion under a
common mathematical architecture. One thus finds the premises re-
flected in the conclusion in a mathematical way. Subsumption under
other kinds of architectures would give rise to different kinds of reflec-
tion. Architectures thus function as universals, binding the premises
and conclusion of an inference together into the sort of ‘unit’ that
is necessary to make it an inference rather than a mere sequence of
propositions or judgments. Knowledge of architectural binding is,
consequently, an essential part of that which is required for extension
of a given kind or type of knowledge by means of inference. Knowledge
of binding by a mathematical architecture — rather than such things as
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preservation of certainty and/or a priority —is thus the crucial difference
separating mathematical from non-mathematical inference, and is the
distinctive feature of mathematical proof.

4. THE NATURE OF MATHEMATICAL RIGOR

The view of proof sketched in the last section brings with it the need
to develop an accompanying conception of rigor since the standard
logical conception of rigor can no longer be applied. On the Poincaréan
account, mathematical proof no longer proceeds in logic-sized steps
but, rather, in steps determined by the ‘metric’ of a given mathematical
architecture. The inferences in a proof themselves comprise substantive
pieces of mathematical insight, and this is something that runs counter
to the very core of the modern, logical conception of rigor.

In conceiving of a mathematical inference as the joint participation
of its premises and conclusion in a distinctively mathematical universal,
the Poincaréan conception of proof builds non-logicality into the very
essence of mathematical inference. It regards the ‘filtration’ of topic-
specific knowledge from mathematical inference as tantamount to de-
stroying it. Consequently, it stands squarely opposed to the modern,
logical account of how rigor in proof is to be achieved, and it must
therefore provide an alternative account.

This it does by offering a different conception of rigor altogether. On
this new conception, the basic ideal is the same: namely, to eliminate
‘gaps’ in mathematical reasoning. However, both the conception of
what constitutes a ‘gap’ and, consequently, the prescribed method for
achieving their elimination are different. A ‘gap’ is no longer a logical
gap but, rather, a gap in mathematical understanding. Gaps of these
two types are by no means equivalent, since it is possible both for there
to be a logical gap where there is no gap in mathematical understanding
and for there to be a logically gapless sequence of propositions that is
nonetheless not bound together by any mathematical understanding.
The elimination of gaps thus no longer calls for the exclusion of topic-
specific information in an inference (which is what logical gaplessness
demands) but, rather, for the inclusion of a mathematical universal to
fill what would otherwise be a mathematical gap between the premises
and the conclusion.

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



POINCARE AGAINST THE LOGICIANS 367

But, is it then not clear that the Poincaréan criterion of rigor fails to
guarantee a complete and fully explicit identification of those proposi-
tions upon which the conclusion of a proof rests? And, if this is so, is
it not also clear that there is a serious deficiency in the Poincaréan
conception of rigor, since the whole point of pursuing proof rigorously
is to gain a clear understanding of that upon which justified belief in a
given mathematical proposition can be made to rest?

It is, we believe, possible to answer both questions in the negative.
To see that this is so, however, it is important to distinguish the notion
of a proposition’s mathematically resting on another from that of a
proposition’s logically resting on another. Propositions that belong to
the logical basis of a proposition need not belong to its mathematical
basis. Thus, if P mathematically guarantees C, then, whether or not P
logically guarantees C, it (i.e., P) constitutes a complete set of proposi-
tions upon which C mathematically rests.”> Hence, in specifying it, one
need leave no propositions out of the relevant basis for C; and this
means that it is possible to obtain a full account of those propositions
upon which a given mathematical belief rests, without thereby obtaining
a logically complete basis for it.

The above remarks should not, however, be taken as suggesting that
logical rigor has no role whatsoever to play in the improvement of
mathematical knowledge. Indeed, we believe that it does. Specifically,
in times of epistemic crisis, when it becomes necessary to revise epis-
temic holdings which, judged from a purely mathematical point of view,
seem unimpeachable, generating logically complete bases may prove to
be the only, or at least the optimal, way of proceeding. Such a proced-
ure has the advantage of explicitly exposing certain assumptions which
mathematical rigor does not bring to light. And, in so doing, it may
turn up something implausible and, hence, something defeasible, in our
tacit assumptions. But whether or not this is the result, the generation
of logically gapless bases for theorems will tend to enlarge the range
of potential candidates for revision and, other things being equal, this
is a virtue in situations where revision is demanded. It is important to
realize, however, that even here it is logical rigor that serves the inter-
ests of mathematical rigor and not the other way around. For the point
of such ‘logicization’ is not to replace mathematical proof but, rather,
to correct it — not to abandon the use of mathematical universals but,
rather, to perfect it.
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5. CONCLUDING REMARKS

Let us close with a few remarks intended to guard against misunder-
standing and, at the same time, to deepen certain parts of our analysis.
Central to our concerns here is a potential misunderstanding which
arises from a natural response to the epistemology of proof sketched
above. The basic idea behind this response is that it should be possible
somehow to ‘express’ or ‘encode’ every universal or architecture ap-
pealed to in the course of a Poincaréan proof as an axiom and, that
done, to make every inference into a purely logical inference. The
process for carrying this out consists of the following two steps: (i)
express each Poincaréan inference as an axiom in conditional form (the
antecedent being the premise, and the consequent the conclusion of
the inference being codified); and (ii) replace that inference by an
instance of modus ponens. In this way, the reasoning goes, every Poin-
caréan proof can be transformed, without epistemic loss, into a purely
‘logical’ proof (i.e., a proof whose inferences are purely logical).

We believe that this argument turns on a failure to recognize a subtle,
yet crucially important, difference between the Poincaréan proof and
(what we might call) its modus ponens counterpart; a difference which
can only be got at by probing more deeply into the epistemic mechan-
isms underlying the two. Let us turn, then, to a more careful examin-
ation of each, so that we may more fully appreciate the differences
between the grounds which each provides for its conclusion.

In the case of a Poincaréan proof, the key feature is the grasping or
intuiting of a mathematical architecture between p and ¢. p is seen to
bear an architectural connection to ¢, and it is the grasping of this
architecture — and seeing that it joins ¢ to p — that is crucial to the
Poincaréan inference from p to c. This is different from simply recogniz-
ing the warrant for connecting p and ¢, which is supplied by a grasp of
the subsuming architecture. Grasping an architecture linking p and ¢
surely provides one with a warrant for connecting p and c¢. And this
warrant surely makes acceptable both the inference from p to ¢ and
the conditional proposition ‘if p, then ¢’. Grasping an architecture is
not, however, epistemically reducible to the provision of such warrant;
it does more than simply justify (or justify with certitude, or justify with
certitude a priori, etc.) the belief that if p, then c. It reveals p and ¢
as mathematically connected.
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The epistemology of (what we are calling) logical proof is entirely
different. Logical relations between propositions, at least on the classi-
cal view, are essentially relations between their truth-values. Likewise,
the essential function of a warrant is to establish what the truth-value
a given proposition is. Thus, with the truth-value of a given proposition
p having been established, the recognition of a logical relationship
between p and another proposition ¢ essentially amounts to one’s having
the ability to establish the truth-value of ¢. Thus, logical inference is,
epistemologically speaking, a means of extending the ability to deter-
mine truth-value from one proposition to another.>®

This is essentially the epistemology of the modus ponens counterpart
of a Poincaréan proof. It shows us why, even if knowledge of the
premise ‘if p, then ¢’ is based on a grasp of the mathematical architec-
ture linking p to ¢, the Poincaréan proof and its modus ponens counter-
part are essentially different. For even though the warrant for ‘if p,
then ¢’ may be based on a grasp of a mathematical architecture linking
¢ with p, the modus ponens counterpart nonetheless abstracts away
from this grasp of architecture itself and focuses instead on its net
classical effect; that is, on the classical semantico-epistemic status (e.g.,
truth, certitude of truth, a priori certitude of truth, etc.) and logical
form of the belief (viz., ‘if p then ¢’) which it warrants. It seeks to
replace grasp of a mathematical architecture connecting p and ¢ with
recognition of its classical effects (i.e., the semantico-epistemic status
and logical form of ‘if p then ¢’). It treats grasp of an architecture as
merely the means by which the classical semantico-epistemic status of
‘if p, then ¢’ is established while viewing the semantico-epistemic status
itself, rather than the means of establishing it, as the matter of primary
epistemic importance.

This leads us to certain observations concerning the nature of what
we are here referring to as ‘logical proof’. The first is that, by an act
of abstraction, it separates or detaches the net classical effect of a
warrant or justification from that warrant or justification itself. It then
replaces the actual grasp or comprehension of the underlying justifi-
cation with reflection on the semantic or epistemic status thus abstracted
from it. In addition to this, the ‘net effects’ with which it is concerned
(e.g., truth, warrantedness, unwarrantedness, warrantedness to degree
n, warrantedness with certainty, warrantedness a priori, and so on)
show too little sensitivity to the particular characteristics of the war-
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ranting processes producing them to be expected to distinguish a mathe-
matical from a non-mathematical grasp of a connection between propo-
sitions in the Poincaréan sense. The ‘logician’ who would replace a
Poincaréan proof with its modus ponens counterpart can have all the
certitude or a priori certitude for his beliefs that Poincaré’s mathemati-
cian does. Still, though he may enjoy the net classical effects of architec-
tural grasp, and though those effects may be abstracted from that
grasp, it is not that grasp itself (but, rather, a reflection on the logical
connections between the propositions making up his inference, and
how these connections provide for the transfer of the requisite classical
semantico-epistemic attributes between these propositions) which
guides his inference. Indeed, it is precisely this which is omitted through
the core act of abstraction which gives rise to a ‘logical’ proof.

It is, of course, entirely natural that logic should abstract away from
and, hence, be insensitive to, all but a very few characteristics of
warrants. Otherwise, it could not achieve that universal scope of appli-
cability which, by its very nature, logic is supposed to have. Thus,
abstraction away from all but such relatively coarse epistemic features
as truth and degree of certainty is programmed into logic by the very
nature of its goals. As we hope the above remarks suggest, this pro-
grammed insensitivity is the point of departure of the Poincaréan’s
critique of attempts to ‘logicize’ genuinely mathematical proofs. Grasp
of a mathematical universal linking p and ¢ is not epistemically reducible
to — and, hence, not epistemically replaceable by — reflection on its
classical effects. This, as we see it, is the essential point behind the
principle of epistemic conservation, which was identified earlier as a key
feature of the Poincaréan conception of proof.

Thus, we see that the central epistemological categories of the Poinca-
réan conception of proof are to a significant extent different from those
of the traditional ‘logical’ conception. It would, of course, be nice to
provide a more illuminating description of those categories than that
which is captured in such phrases as “‘grasping a mathematical univer-
sal” and ‘““mathematical intuition”. That, however, may not be possible
since such notions may simply form the primitives from which a Poinca-
réan mathematical epistemology must proceed. But primitive or not,
such categories appear to be necessary if, as Poincaréan epistemology
would have it, we are to be able to account for the seeming differences
separating the epistemic condition of the ‘logician’ from that of the
genuine mathematician.

Copyright (c) 2005 ProQuest Information and Learning Company
Copyright (¢) Kluwer Academic Publishers



POINCARE AGAINST THE LOGICIANS 371

NOTES

* The author would like to thank the Alexander von Humboldt Foundation for its
generous financial support. Thanks also to Dick Foley for useful comments on an earlier
draft.

! Cf. Poincaré (1902, 1905, 1906, 1908, 1913), and Russell (1905, 1906). But though,
historically speaking, Poincaré’s debate was carried on with Russell, his ideas find a
more striking and worthy opposite in the writings of Frege, whose philosophical defense
of logicism I regard as superior to that of Russell’s. For this reason, I will give Frege’s
ideas a prevalence that the reader might otherwise regard as surprising given Poincaré’s
seeming ignorance of them.

% This is a theme that is sounded repeatedly in Poincaré’s writings. Cf. 1905, ch. 1 (in
particular, pp. 13-26, 29-31, and 36-37); 1908, Intro., ch. 3, bk. I; chs. 2, 3, bk. II.
Throughout this essay, English translations (along with accompanying page references)
of passages from 1902, 1905, and 1908 are from the authorized translations of those
works collected in Halsted. A propos 1913, the translation and pagination are from the
translation by Bolduc.

3 Cf. Poincaré 1908, ch. 2, bk. II (p- 438, Halsted). These ideas of Poincaré’s resonate
with some of Brouwer’s philosophical views. For more on this, see Detlefsen (1990).

* Cf. Kitcher and Aspray, pp. 61-81.

> Cf. Frege (1884, p. 23) where he cites the views of Leibniz with approval. Leibniz (cf.
Bk. IV, ch. vii, par. 9) maintained that there is a ‘“‘natural order of truths” that is not
to be confused with the order of discovery or awareness or belief. Rather, the ordering
of this “natural order” is an objective, metaphysical ordering wherein a given known
truth is not only the basis of our judging another proposition to be true, but also the
“cause” of that proposition’s truth.

A reason is a known truth whose connection with some less well-known truth leads
us to give our assent to the latter. But it is called a reason especially and par
excellence, if it is the cause not only of our judgement but also of the truth itself.
(Leibniz, bk. IV, ch. xvii, par. 3)

® We say this despite the fact that Poincaré himself once made an unfavorable comparison
between the views of Hermite and those of the so-called Cantorians (cf. 1913, pp. 72~
74) on the grounds that the latter put too much emphasis on “‘epistemology” and not
enough on “psychology”. However, the ‘epistemology’ of these remarks is not the episte-
mology of the present discussion; nor is the ‘psychology’ the pschology which was opposed
by the logicists. Rather, the ‘epistemology’ is a radically anti-Kantian affair which denies
that “all that we can know of [a reality that is exterior to and independent of us] depends
on us” (cf. p. 74; brackets mine). Complementarily, the ‘psychology’ consists in the
recognition of a Kantian mental element (like the categories of thought) in knowledge.
’ On a simple subjectival typification, one starts with a sorting of propositions according
to subject-matter, and then constructs an epistemic typification on that by sorting knowl-
edge according to the subject-matter of its content. Thus, knowledge of a proposition p
would be classified as belonging to a certain epistemic type just in case p were classified
as belonging to a certain subject-matter. Applied to the case we’re interested in -
namely, mathematical knowledge - such a classification scheme would work like this: p is
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mathematical knowledge just in case (i) p is known, and (ii) p is a proposition of
mathematics.

Modifications of a subjectival typification can be obtained by modifying its non-sub-
jectival clause. Thus, for example, one could obtain a modification of the above subjectiv-
ally typified characterization of mathematical knowledge by altering clause (i) to require
that p be known with certainty, and/or a priori. The principle of typification which we
will suggest as a basis for Poincaréan epistemology belongs to this general category of
modified subjectival typifications. That is, it treats subjectival considerations as necessary
but not sufficient conditions for mathematical knowledge. Hence, it demands more of
mathematical knowledge than simply that it be knowledge whose content is mathematical.
It sees certain features of what might be called noetic mode as being as important a part
of mathematical knowledge as content.

Its chosen variant of noetic mode, however, is not merely some combination of the
classical ones mentioned above (i.e., certainly, and/or a priority). Indeed, it is different
in spirit from such traditionally accepted properties of mathematical knowledge. For the
traditionally accepted properties apply as well (and perhaps even better!) to logical
knowledge as to what is more properly mathematical. Yet Poincaré’s conception of noetic
mode is intended to exclude logical knowledge. More on this later.
® What Poincaré actually says (cf. 1908, ch. 3, bk. I (p. 385, Halsted)) is this: if one can
“‘perceive at a glance the reasoning as a whole”, then she “‘need no longer fear lest [she]
forget one of the elements for each of them will take its allotted place in the array™
(brackets mine). Given the larger context in which this remark occurs, however, it is not
altogether clear whether it is to be taken as stating the view expressed above, or a view
according to which eliminating gaps in understanding leads to the elimination of logical
gaps. We prefer our reading because it seems to fit better with Poincaré’s belief in the
essential non-logicality of mathematical reasoning. (Why, if mathematical reasoning is
non-logical, should perfecting mathematical understanding lead to the elimination of
logical gaps in a proof? And why should this be regarded as something desirable?)
® The paragraph referred to is headed by the question “How is Pure Mathematics
Possible?”. The text is as follows:

Here is a great and established branch of knowledge, encompassing even now a
wonderfully large domain and promising an unlimited extension in the future. Yet
it carries with it thoroughly apodeictic certainty, i.e. absolute necessity, which there-
fore rests upon no empirical grounds. Consequently it is a pure product of reason,
and moreover is thoroughly synthetical. [Here the question arises:]

“How then is it possible for human reason to produce a cognition of this nature
entirely a priori?”

1% By a Leibnizian form of logicism we mean a strong form of logicism which does not
put set-theoretic principles like Frege’s or type-theoretic principles like Russell’s into the
logical foundations. Rather, it claims to use only such immediately logical or analytical
principles as the so-called law of identity and the principles of syllogism. Thus, Poincaré’s
fundamental opposition to logicism was not based on a suspicion of the less clearly
analytic principles (e.g., axioms of comprehension, infinity and reducibility) that Frege
and/or Russell put into their ‘logical’ bases. Rather, it rested on what Poincaré regarded
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as an unacceptable consequence of its success; namely, that the whole of mathematics
would thereby be reduced to a body of ‘tautologies’.

"' Cf. also 1908, chs. III, IV (pp. 452, 462, Halsted).

"2 What is here, by inference, being termed the ‘logical’ conception of rigor might also
be called the ‘logicist’s’ conception of rigor. This is so because it was introduced not for
the sake of exposing and eliminating steps in our reasoning for which our mathematical
understanding does not provide a warrant but, rather, to force all elements of that
understanding out into the open so that their logicaliry might be determined. This is part
of the logicist’s task, since he must show that every truth of mathematics can be estab-
lished on purely logical grounds.

® To put it another way, Poincaré’s primary challenge to Russell and Cantor was not to
defend the distinctively logicist idea that the basic laws of mathematics are logical in a
character but, rather, to defend the accompanying view (shared by many non-logicists as
well) that the logicization of mathematical proof represents an ideal of mathematical
rigor and, hence, something to which mathematical practice ought to aspire.

" To my knowledge, Poincaré never gave another specific example of a distinctively
mathematical form of inference. Still, he believed that there were kinds of intuition other
than arithmetical (cf. his remarks on analysis situs in 1913, pp. 25ff.), and this suggests
that the existence of other kinds of distinctively mathematical inferences would not be
foreign to his thought. Indeed, he says (1908, Bk. II, ch. III, sec. III (p. 452, Halsted))
that he did not mean to suggest in his earlier writings that all mathematical reasoning
can be reduced to induction, but only that it is the simplest example of the general type
of reasoning that he has in mind, and that all other representatives of this kind share the
same ‘“‘essential characteristics”. It may, however, be that he believed mathematical
induction to enjoy a place of special distinction because of its newly confirmed “cen-
trality”’ — a centrality made apparent by the impressive efforts of Dedekind and Weier-
strass to “‘arithmetize’” analysis. This moved (second-order Peano) arithmetic and, with
it, (second-order) mathematical induction much closer to the center of the mathematical
arena. Hence, it gave mathematical induction a certain prominence among mathematical
forms of inference.

This may have been the reason why Poincaré made mathematical induction the focal
case of a distinctively mathematical inference. Still, we should not lose sight of the fact
that he also emphasized the fact that there are limitations to how fully the founding ideas
and conceptions of topology and analysis can truly be arithmetized (cf. 1913, p. 29).
> Though Frege sided with Leibniz on the nature of arithmetic, he sided with Kant on
the nature of geometry, saying

... I consider Kant did a great service in drawing the distinction between synthetic
and analytic judgements. In calling the truths of geometry synthetic and a priori, he
revealed their true nature. And this is still worth repeating, since even today it is
often not recognized. If Kant was wrong about arithmetic that does not seriously
detract, in my opinion, from the value of his work. His point was that there are such
things as synthetic judgements a priori; whether they are to be found in geometry
only, or in arithmetic as well, is of less importance. (Frege 1884, pp. 101-02)

16 Roughly, the idea here is that if the number of basic laws is kept ‘small’, then there
is less chance that any proper subsystem of them would amount to anything substantial
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enough to be regarded as an autonomous domain of reasoning. Hence, removal of any
one of them would effectively destroy reasoning as we know and think of it, and so
substantially all of them would have to be involved in the proof of each theorem. Of
course, for such argument to work, one has to make various auxiliary assumptions (e.g.,
that no basic law is used only in the derivation of a relatively small and/or unimportant
portion of the entire system of theorems).

Another task that Frege seems not to have seen too clearly is the need to keep the
basic laws of thought from being too powerful; specifically, from being powerful enough
to serve as a basis for geometry as well as arithmetic. For if they were to become this
powerful, then Frege would not be able to sustain his agreement with Kant concerning
the synthetic a priori character of the laws of geometry, since the posited difference in
revisability of geometrical and arithmetical laws could not then be accounted for. This
may actually be a serious problem for Frege, since the ‘science of number’ for which he
intends to provide a logicist basis is apparently supposed to be strong enough to include
such real number theory as would be necessary for an analytic version of geometry. Of
course, one must be able to get the apt representation of spatially given continua and
transformations thereupon by their analytically described counterparts. However, it is
not clear — at least not to me — that this requires spatial intuition rather than what Frege
would have regarded as purely ‘conceptual’ thinking. But whatever the case, it seems
clear that Frege owes us some explanation.

7 Something like this basic point holds for Russellian as well as for Fregean logicism.
For Russell, too, intended his basic principles to be ubiquitously manifested features of
rational thought, or at least of mathematical thought.

'® Could an emphasis like Poincaré’s on the importance of locally distinguishing features
of an area of thought perhaps be combined with an emphasis like the logicist’s on the
ultimate reducibility of all local areas of thought to global principles of rational thinking?
That is, might it be possible to have both a set of locally distinctive derived results and
a globally valid set of ultimate axioms? The answer, I think, is ‘No’. For assuming that
the theorems were derivable using only globally valid principles of reasoning, as the
logicists insist, they (i.e., the theorems) would be derivable from globally valid axioms
using globally valid principles of inference. There is some intuitive force to saying that
this would make the theorems globally valid, too. Still, I don’t know how to prove such
a claim generally, nor even in the case of Poincaréan epistemology. Allow me to explain.

If one assumes a Tarskian notion of consequence, the claim is easy to prove. For then
a theorem resulting from the application of globally valid rules of inference to globally
valid premises must itself be globally valid (i.e., true in every interpretation of its
language).

One can even see how to put together a proof for someone like Frege who had a
rather more epistemic conception of consequence. On his conception, a proposition is
not to be identified with its set of models, as is the case in Tarskian semantics but, rather,
with its set of ideally rational believing agents, where these agents are to be thought of
as demarcated by the a posteriori and synthetic a priori information they have. Hence, a
globally valid axiom is one that is believed by all ideally rational agents regardiess of the
synthetic a posteriori information they possess; and a globally valid principle of inference
is one such that every ideally rational agent who believes its premise(s) will also believe
its conclusion. It follows, therefore, that the conclusion of a globally valid inference with
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globally valid premises will itself be globally valid (i.e., believed by all the ideally rational
agents regardless of their synthetic a posteriori information).

Poincaré, too, had an epistemic notion of consequence, but it was radically different
from Frege’s. His epistemic states (or attitudes) were typed so that it is not only sheer
preservation of belief per se but also preservation of belief-type that must be considered
in connection with inference. Moreover, his epistemic types were more finely demarcated
than those (viz., the a priori vs. the a posteriori) which Frege took over (with modification)
from Kant. In particular, he seems to have had a category of distinctively mathematical
information marked, at least typically, by its very lack of globality. Because of this, his
epistemic conception of consequence would have to be radically different from that of
the Fregean. For extending the Fregean conception would mean counting a conclusion
as mathematically known if the premises were mathematically known and the inference
taking one from the premises to the conclusion were logically valid (i.e., such that every
ideally rational agent who believed the premises must also believe the conclusion). This
is so because the mathematical believers would form a subset of the class of ideally
rational agents and, hence, would form the class of believers of the conclusion, making
(on the Fregean conception) the conclusion a mathematical belief . . . contrary to the way
Poincaré seemed to think of things. Hence, on Poincaré’s scheme it does not seem
possible to represent a mathematical belief simply as (a belief shared by) the (or a) class
of mathematical believers, as is suggested by the Fregean model. Indeed, it seems as if
mathematical knowers might best be represented as believers lacking certain beliefs (e.g.,
those not marked by a distinctively local validity). If this is so, then the correctness —
nay, even the coherence — of the idea that the application of globally valid rules of
inference to globally valid premises guarantees globally valid conclusions is unclear. For
there is seemingly no convincing way to argue for a connection between non-belief in P
and non-belief in I(P, Q) (i.e., an inference from P to Q), on the one hand, and non-
belief in Q, on the other. Hence, as was remarked earlier, there is no way to show in
general that the application of globally valid principles of inference to globally valid
premises results in globally valid conclusions. Specifically (and ironically!), there is no
way of doing so for the Poincaréan viewpoint.

1% As was noted above, in the view of both Leibniz and Frege there is an objective,
metaphysical ordering of the truths of mathematics. According to them, one’s epistemic
mastery of a subject is optimal when she grasps the objective relation which orders its
truths. Correspondingly, truths are epistemically mastered when their place within the
objective hierarchy is determined, and those proofs are epistemically optimal which
display that segment of the hierarchy connecting the truth being proved with the foun-
dational - globally valid - truths. Similar views are espoused in Aristotle (cf. Book I,
chs. i-x) and Bolzano (cf. paras. 198, 401 and 525).

* 1t should perhaps be noted that Poincaré’s opposition to logicism would therefore
extend even to such neologicistic programs as might give up claiming analyticity for the
axioms, but still obliterate the ‘local’ structure of mathematical reasoning.

! When more than one premise is involved, I am assuming that the point would be this:
the concluding sentence produced by applying an analytic form of inference would have
to be equivalent either to one of the premises or to some conjunction of them.

> When we speak of a conclusion of an inference expressing a different proposition from
its premises, what we mean is that it does not express the same proposition as is expressed
by any conjunction of its premises.

# Cf. secs. 36-37 of Kant’s Logic.
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2% The logicist is, of course, also committed to the use of logical inference in mathematical
proof. Nor is this only a reflection of his general belief in the homogeneity of rational
thought, for he also takes it as necessary for attaining the kind of rigor he requires of
his proofs. His proofs must be conducted in such a way as to eliminate the threat of non-
logical assumptions surreptitiously entering his inferences. Hence, his inferences must
themselves be of a logical character.

> Cf. Poincaré (1905, ch. I (pp. 217-18, Halsted)) for a similar point.

* How about an example of an ‘architecture’? The only one that Poincaré himself
provided is that concerning the natural numbers. Grasping the architecture of the natural
numbers supplies one with that form of inference which Poincaré regarded as mathema-
tical reasoning par excellence — namely, mathematical induction. However, this kind of
architecture (which may be thought of as the architecture of a domain of objects) is at
least conceptually distinguishable from an architecture of a field of thought (which is a
family of results, not objects). Poincaré did not explicitly distinguish these two kinds of
architectures; and this despite the fact that much of what he said seems to depend on
there being such a distinction. Perhaps this was because the two types of architectures
are clearly related, and that it is architectures of results that are of ultimate concern to
an epistemology such as his. Architectures for domains of cbjects will typically induce
architectures (or perhaps sub-architectures) on results; a fact that is made clear by
inferential ordering of propositions effected by mathematical induction -~ an inferential
ordering of propositions that is only made possible by the inductive ordering of the
natural numbers. Whether all inferential orderings are ultimately based on some feature
of an object ordering is a difficult question, and one that we do not know how to answer.
But it seems clear that we would have no reason to pay less attention to architectures
on domains of results that might arise from other sources.

*’ This conception of inference treats the universal U, 7 as at least inducing (if not being
literally identical with) a set X of ‘stages’ or ‘positions’ of its realization, together with
an ordering (or partial ordering) O defined on 3. Thus, when the two universals U(=
U,r) and U'(= Uy ) are identified, this means (at least) that 3 =3’ and O = O".

28 And, it is by no means clear that it does, since that depends on whether there is some
essential feature common to ali mathematical architectures. It might be instead that the
various branches of mathematics each have a distinctive architecture of their own, and
that each therefore gives rise to its own theory of inference. This is in keeping with what
Poincaré has to say about mathematical reasoning since his point is simply that the
mathematician always makes use of some local architectural knowledge or ‘intuition’ in
her inferences, not that she always makes use of the same one. On this view, one would
have to rely on something like a notion of ‘family resemblance’ to account for any
commonality that might be thought to bind mathematical reasoning together as a whole,
since one seems to be dealing with a similarity that is not metrizable (on pain of collapsing
the local distinctions in question).

? It may be that a logical architecture is distinguishable primarily by what it lacks rather
than what it has. That is, its only distinguishing features may be its preservation of such
relatively coarse epistemic features as a priority and/or approximate degree of certainty,
and its attempt to base a metric for epistemic ‘development’ or ‘advance’ on a semantical
criterion for individuating propositions.

* The only thing like a general theory of inference would be the general account of the
basic elements or structure of inference sketched above. But that is not what we're
thinking of as a general theory of inference. The general account of the structure of
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inference only says that every inference makes use of an architecture, and a way of
parsing and ordering that architecture into stages of ‘development’. But it does not
presume any significant commonality either among the architectures or the scheme of
stages associated with each. What we are referring to as a general theory of inference
would do precisely that.

3! This is in addition to the fact that all inference is also synthetic in the sense that it
involves uniting (possibly) several premises into a single ‘message’ (the conclusion).

3 If the ability in question is understood in such a way as to signify infallibility, the
condition would also be too strong. In mathematics, as elsewhere, development can
include some false starts. Thus, allowance must be made for a kind of grasp of architecture
which does not rule out the possibility of false starts, but which nonetheless gives one
some guidance. Architectural grasp thus appears to admit of degrees. Hence, in the
final analysis, Poincaréan epistemology may also produce a conception of mathematical
knowledge which admits of degrees.

* It is trickier because at some point it becomes hard to see the difference between
doing mathematics poorly and not doing it at all. Just as, I suppose, there comes a point
where it is hard to make out a difference between one who plays chess very poorly and
one who doesn’t really play it at all. The clearest cases of not playing chess are probably
where either the rules for moving the pieces are broken, or where one does not play
according to the goals of the game (e.g., where one would seek to put himself into
checkmate rather than his opponent). But one can approach, in effect, the latter of these
paradigmatic failures simply by being a consummately poor strategist. There comes a
point where one’s strategy is so bad that it is as if her intention were to mate herself.
(There would, of course, be a difference in the intentions of the poor strategist and the
chooser of false goals. However, that may only tell us that there is a difference between
actually playing chess and sincerely intending to.) Perhaps the same is true of mathematics
(as conceived by the Poincaréan) - there may come a point where one’s choice of
strategies is so poor that there is no meaningful difference between doing mathematics
poorly and not doing it at all.

34 Actually, it doesn’t even mean that. For failure to do as well as might have been done
might be due to poor execution of the strategy selected rather than poor choice of
strategy.

** There may, of course, be no such thing as the set of propositions upon which C rests.
The same, however, is true of the axiomatic approach, since it does not guarantee
existence of a single, unique proof of any theorem and, indeed, in some cases (e.g., cases
where the theory is not finitely axiomatizable, where not every axiom is used in every
proof, or where the axioms of the theory are not independent), a plurality of proofs may
be necessitated. We should also like to point out that though we speak here as if
inferences are composed of propositions, we are not officially committing ourselves to
such a view. What we have to say could be made to fit as well with conceptions of
inference which see it as composed of beliefs or judgments. Such an alteration would
only force us to speak of the relationship between the contents of the various beliefs or
judgments making up an inference.

36 Modifying this to say that it is a means of extending the ability of one to determine a
priori truth-value from one proposition to another does not change the view for our
purposes. For just as the Poincaréan would insist that there is more to mathematical
knowledge that merely determining the truth-value of a mathematical proposition, so,
too, would she insist that there is more to mathematical knowledge than, say, the certain
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determination, or the a priori determination with certitude, of the truth-value of a
mathematical proposition. No such modification shows any promise as a means of captur-
ing what Poincaré seems to have had in mind by grasp of an architecture. Thus, viewed
from the vantage of the categories of classical mathematical epistemology, Poincaré’s
notion of grasping an architecture appears to be a primitive notion.
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