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¶

A leitura da minha recensão cŕıtica de A Fórmula de Deus causou
algum espanto quanto à minha gozação (ainda hoje me rio!) acerca da in-
terpretação que José Rodrigues dos Santos (o nosso Tintim) deu ao Prinćıpio
de Incerteza de Heisenberg. Alguns leitores (que gostaram do meu texto)
sentiram-se incomodados (e alguns... são académicos): então, a incerteza
não advém da interacção entre o aparato experimental (o célebre microscópio
de Heisenberg) e o objecto observado?

NÃO! O Prinćıpio de Incerteza muito mais profundo do que um mero
entanglement entre o aparato experimental e o sistema observado.

Para mostrar que o assunto é bem estudado, deixo uma leitura de um
livro sobre fundamentos da f́ısica, um clássico entre muitos outros clássicos.
Não posso explicar-lhes em poucas palavras a natureza estocástica dos fun-
damentos da Mecânica Quântica (MQ), mas deixo-os acompanhados de uma
deliciosa leitura de Mario Augusto Bunge.

¶

LEITURA de Mario Bunge, Foundations of Physics, Springer Tracts
in Natural Philosophy, Volume 10, 1967, pp. 256–257, 264, 265–268.

CONTEXTO Thm.3 e Thm.9 que estabelecem as relações de incerteza
de Heisenberg. 1

Thm.9: spreads of canonically conjugate variables. For every 〈σ, σ〉 ∈
Σ × Σ, every ψ ∈ H that solves Schrödinger equation for σ + σ, and every
trio A,B, C ∈ {f} such that A4A, B4B, C 4C, with A,B,C ∈ {Q} and
AB−BA = iC, the standard deviations of the A and B distributions in the
state ψ are related by

∆ψA ·∆ψB ≥
1
2
|〈C〉ψ| .

Proof. By the corollary of Thm.2 and the Schwarz inequality.
1Σ and Σ are nonempty denumerable sets. Every σ ∈ Σ is the environment of some

σ ∈ Σ. For every ordered pair 〈σ, σ〉 ∈ Σ × Σ there exists a Hilbert space H associated
with 〈σ, σ〉 ∈ Σ × Σ. {Q} is a nonempty family of functions on Σ. {f} is a nonempty
family of operators in H.
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(1) This theorem, a generalization of Heisenberg’s “principle”, places
a lower bound on the scatters of canonically conjugate properties. An equal-
ity can in principle be obtained upon specifying A, B, C, and ψ. (2) Once
again, nothing has been assumed about measuring devices. Consequently
the preceding theorem is supposed to be satisfied by every 〈σ, σ〉, whether
or not σ happens to idealize an apparatus, and even when there is no σ —
e.g., for a free electron. How could we specify anything about the experi-
mental set-up if we have not even specified the properties A and B? (3)
The usual interpretation of the random fluctuations as uncontrollable dis-
turbances caused by the apparatus is ad hoc since (a) no apparatus variable
occurs in the theorem (not even when deduced in the orthodox textbooks)
and (b) in general there exists no joint probability distribution for pairs of
noncommuting variables, whence no conclusion about the spreads of mea-
surement results can be drawn even applying [the above theorem] to an
experimental situation (Suppes, 1961). (4) The widespread belief that the
scatter relations ([the above theorem]) can be inferred from an analysis of
measurements and then the corresponding commutation relations deduced
from scatter relations (Heisenberg, 1927) is plainly false: (a) Thm.3 is a
universal statement involving unobservables, and no such statement can be
gotten by induction from the observed instances; (b) every analysis of a mea-
surement procedure is made in some context or other (see Ch.1, 5.1.4), and
if QM is not used to this end then some classical theory will be employed
(as is usual in Heisenberg and Bohr’s analyses of gedankenexperiments)
— but then no quantal relations will come out; (c) if the scatters of A
and B satisfy ([the above theorem]), then its commutator can be any of
the infinitely many relations [A,B] = i(C +D) with an arbitrary D subject
to the sole condition 〈D〉 = 0. (5) Similar relations occur in CEM and
other field theories, also independently of considerations on measurements.
This is one more reason for not interpreting them as either indeterminacy
or uncertainty relations caused by either The Observer’s ignorance or His
experimental activity.

Lemma 1: basic commutation relations. If P ≡ (~/i)∇, then

xiPj − Pjxi = i~δij .

Thm.9: Heisenberg relations. For every 〈σ, σ〉 ∈ Σ × Σ in a state
ψ ∈ H, the scatters in the position and momentum distribution at any
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given t ∈ T are reciprocal:

∆ψx ·∆ψP ≥ ~/2 .

Proof. By axiom QM 6, Thm.3 and Lemma 1.

Remarks. (1) Since this is a very special theorem, to start philosoph-
ical discussions with it is misleading — as much as calling it a “principle”.
(2) Read in terms of particle mechanics, these relations mean that the dy-
namical state of a system — another classical concept — is not sharply
determined since the better the position of a particle is “defined” the worst
its momentum is “defined”. No such indeterministic interpretation is pos-
sible in our version of QM because the concept of classical particle is alien
to it. (3) Similar relations occur in classical field theories and for the same
formal reason — namely that the two distributions are related by a Fourier
transformation. [...] (4) Thm.9 is sometimes “deduced” by reasoning on
ideal measurements, e.g., by means of Heisenberg’s microscope. It is even
claimed that the statement was originally inferred from a detailed analysis
of measurement procedures. But no such deduction is possible, for reasons
given in Remark 4 to Thm.3 and because (a) experimental arrangements
are classical describable (as Bohr himself has untiringly emphasized), (b)
the Heisenberg relations happen to be probability statements, and (c)
the theoretical spreads require the knowledge of the unobservable ψ. What
happens is (a) that, by interpreting x and P as classical variables referring
to a point particle, relations similar to Heisenberg’s can be obtained for
some examples (but then ~ is missed); (b) by interpreting ψ as a classical
wave field, relations similar to Heisenberg’s can be obtained (see Remark
3 above); (c) classical gedankenexperiments can always be imagined to il-
lustrate [the inequation above] and other relations, which is no wonder as
they are tailored to that task but not every actual calculation for such
idealized situations happens to confirm Heisenberg’s relation (Beck and
Nussenzveig, 1958); [...] (5) The Heisenberg relations pass for being an
illustration of the wave-particle duality, which would in turn be a case of the
complementary principle. There is no such duality in our version of QM ,
because it contains neither the concept of wave nor that of particle. Being a
stochastic theory, it is only natural that spreads should occur in it alongside
averages. And Thm.9 states only that, the narrower the x-distribution, the
broader the p-distribution and conversely: this has nothing to do with a
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complementarity between experimental set-ups (or alternatively modes of
description). So much the better, because the complementarity principle is
subject to grave philosophical difficulties (Bunge, 1955b). [...] A frequent
reading of Heisenberg’s relations is this: “One can never know exactly the
simultaneous values of the position and the momentum of a system”. This
presupposes that a quanton has a definite momentum at any time, only for
some reason (incompleteness of the theory, or else disturbance by a measur-
ing device) we cannot get to know them accurately. This is not what our
version of Thm.9 states: it speaks not about human knowledge and igno-
rance but about a chunk of reality that has no simultaneous sharp position
and momentum, for the excellent reason that it has neither a position nor
a momentum tout court but position and momentum distributions (by QM
6). For having such distributions it has the possibility of going exception-
ally either to a sharply localized state or to a state of sharp momentum.
But in general it will be in a state in between which, from a classical view-
point, is an intolerable wishy-washy situation. (8) That measurements of
position and momentum give no simultaneous sharp values follows from the
preceding in conjunction with the truism “What does not exist cannot be
measured”. [...]

[...]

And now to a pseudotheorem. It is usually claimed that the relation
similar to Heisenberg’s holds for energy and time, namely

∆ψt ·∆ψE ≥ ~/2 .

It could be that, properly interpreted, this formula were true. But it does
not belong to QM ; in particular, it cannot be proved along the lines of
Heisenberg’s relations. The reasons for this are: (a) t is not an opera-
tor in Hilbert space, hence it exhibits no scatter; (b) although i~∂/∂t is
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sometimes said to be the energy operator, only H plays this role, and for a
stationary state H has no spreads either (indeed, 〈H〉 = E and 〈H2〉 = E2),
whereas [the above formula] is alleged to be completely general. So far there
are only heuristic reasons for the so-called Heisenberg 4th relation (actually
proposed by N. Bohr). But in any case it cannot be interpreted similarly
to Heisenberg’s relations if only because ‘∆t’ cannot be a standard devi-
ation as long as t is a “c-number”. If one wants to have [the above formula]
one must modify QM by introducing a suitable time operator — and then
destroy the equivalence between the Schrödinger and the Heisenberg “pic-
tures”, as in the latter the dynamical variables evolve in time. Contrary to
a widespread belief, the same holds for relativistic QM : in this theory, too,
t is a classical variable.
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