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Abstract

The so-called twin paradox in special relativity, first introduced by Paul
Langevin, aims to present, in a specially cogent manner, the difference be-
tween the aging rates of two twin brothers as one stands still in some inertial
reference frame - the Earth frame will do, for this purpose - while the other
executes a fro and back trip in two legs, at a constant speed in each one of
them, with respect to the brother at rest on Earth. As is well known, much
confusion came out of this situation, but a especially clear, recent discussion,
by the philosopher Tim Maudlin, stimulated the following note that aims to
put forth clearly the mistake contained in one very common explanation.

1 The case of two twins
Following the discussion in Maudlin [1], we will use only the invariance of the
relativistic interval between any two events in our discussion, without recourse to
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the Lorentz transformations. In this manner, the geometrical characteristics of the
Minkowski metric of spacetime are all that is needed to put forward the argument.

In Minkowskian special relativity, one considers occurrences or events as the
building elements of all physical phenomena. Examples would be collisions be-
tween bodies, reflections of light rays on surfaces, and so on. These events take
place in space and time and, once one adopts some appropriate inertial reference
frame R, one can attach definite coordinates to each one of them. For the present
purposes, this common approach should be enough, but a deeper discussion can be
followed in Maudlin’s book. Then, following Minkowski, one defines the relativis-
tic interval ∆s between any two events E1 and E2, with coordinates (x1, y1, z1, t1)
and (x2, y2, z2, t2), by the positive solution of the equality

∆s =
√
c2(t2 − t1)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2, (1)

a result expressed in meters, naturally (c = 3× 108 m/s being the speed of light in
vacuum). The geometry of Minkowski spacetime is such that the number obtained
for the interval between any two events is independent of the reference frame in
which their respective coordinates are being measured. That is to say, spacetime
intervals are relativistic invariants, if ∆s′ is associated with the prime coordinates
from another frame R′, then ∆s = ∆s′. In particular, one can choose the reference
frame attached to some physical object, its proper frame (such as one of the twin
brothers), and then, not only is the difference in spatial coordinates between any
two events that happen to that body zero (we are considering twins reduced to
single mathematical points !), but also the time lapse between those same events
has now a special meaning, being called the "proper time" between those events,
traditionally symbolized by the greek letter τ . Consequently, one measures the
interval c∆τ in the proper frame (with ∆x = ∆y = ∆z = 0), and the same value
in any other inertial frame even though the spatial distances are no longer zero,
that is to say, c∆τ = ∆s.

Let us now consider the Minkowskian spacetime diagram in the figure below.
For simplicity, only the x space coordinate is depicted, along the horizontal axis,
and the time, also measured in meters through the product ct, runs along the
vertical axis. This is the frame attached to twin A, its proper frame. As time goes
by, twin A occupies successive positions along the positive vertical axis, always at
x = 0 (the green line). Twin B, on his part, starts moving along the positive x-
axis of twin A’s frame, and his successive positions are depicted on the Minkowski
diagram as occupying the red line from the origin (0, 0) to spacetime point (5, 4),
i.e., reaching the x = 4 m coordinate of this frame at the instant ct = 5 m
as measured in twin A’s frame, and then from this point in spacetime to point
(ct = 10, x = 0), that is to say, back to the origin, meeting twin A again (here we
are using exactly the same numerical example as in Maudlin’s).
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Now, given the metric properties of Minkowski spacetime, the interval between
the two events, of twin A seeing his twin B leave and having him back again will
be

∆s |A(0,0)→(10,0)=
√

(10− 0)2 − (0− 0)2 = 10 = c∆τ (2)

as measured by twin A. So, A aged ∆τ = 10/c seconds between these two events.
Between these same two events, labeled as (0, 0) and (10, 0) in this frame, the

total interval measured with respect to twin B, which occupies coordinate x = 4
at the intermediate time ct = 5, is given by the sum of the intervals obtained for
each leg:

∆s |Btotal= ∆s |B(0,0)→(5,4) +∆s |B(5,4)→(10,0) . (3)

Substituting for the concrete values in the example, we get

∆s |Btotal=
√

(5− 0)2 − (4− 0)2 +
√

(10− 5)2 − (0− 4)2 = 6, (4)

there is to say, the time lapse between the two events, as measured by the B twin
in his own frame (not used above) but using the data above from A’s frame, will
be ∆s |Btotal= 6/c = ∆τ seconds, less the one corresponding to twin A, 10/c.

2 Mistaken explanations
Maudlin [1] considers three kinds of confusion surrounding the explanation of the
twin paradox. The first one claims that the effect can not occur because it would
represent a breach of the supposed total equivalence between reference frames ("all
motion is relative"), which is in fact false. The second confusion, perhaps the most
common, argues that what distinguishes the two twins A and B is the acceleration
felt unequivocally by twin B; this different acceleration would by itself imply the
different agings (he cites both Rindler [2] and Feynman [3], in this regard, but, in
fact, the examples are endless). As a matter of fact, what matters, as Maudlin
points out, is the length of the trajectories in the spacetime diagrams, and not
their particular shape (in this regard, see also reference [4], page 125 : "proper
time is not integrable"). It is this second confusion that matters to us, presently.
Finally, there is the confusion about the supposed effects of "speed" at which some
clock moves on the time it gives, whereas, in fact, speed is irrelevant.

As just mentioned, what matters here is the common argument according to
which it is the fact that twin B suffered an acceleration at the intermediate position,
here (ct = 5, x = 4), that justifies him aging less, establishing a causal connection
of the kind different accelerations ⇒ different agings.
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3 Unequal accelerations, equal agings
We consider, then, the common explanation that invokes the fact that the two
twins suffer different accelerations and that it is this circumstance that ultimately
justifies their different agings. Now, if it were true that different accelerations
imply a brake up of symmetry and thus different agings, then, by modus tollens,
equal agings should necessarily imply having suffered equal accelerations. That
this is not so will be clear from an analysis of the diagram. We take again the two
twins, A, B and, as before, A stays put at (ct, x = 0) starting at (ct = 0, x = 0),
whereas B moves from the origin (ct = 0, x = 0) to spacetime point (ct = 5, x = 4)
on the first leg, and from this to spacetime point (ct = 10, x = 0) on the second
leg, i.e., back to the origin.

But now we consider a third twin brother, C, who performs a more crooked
trajectory in spacetime, leaving the vicinity of twin A at the same time and place
as twin B (i.e., at the spacetime origin (0, 0)), but moving in the negative direction
along the x axis at a constant speed until he reaches the spacetime point (ct =
2.5, x = −2) where he inverts his unidimensional trajectory and returns to the
space origin x = 0, meeting twin A at spacetime point (ct = 5, x = 0). Here
he rebounds once more, moves along the negative x axis to point x = −2 again,
reaching it at time ct = 7.5, and then back to the position of twin A, at x = 0,
which he reaches at time ct = 10 (the blue line in the diagram).

Let us now compute the total relativistic interval for twin C. We have
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∆s |Ctotal= ∆s |C(0,0)→(2.5,−2) +∆s |C(2.5,−2)→(5,0) +∆s |C(5,0)→(7.5,−2) +∆s |C(7.5,−2)→(10,0)

(5)

=
√

(2.5− 0)2 − (−2− 0)2 +
√

(5− 2.5)2 − (0 + 2)2 +√
(7.5− 5)2 − (−2− 0)2 +

√
(10− 7.5)2 − (0 + 2)2 = 6

in meters. One can see that this is exactly the same value obtained for the rela-
tivistic interval in the case of twin B.

4 Conclusion
The obvious conclusion form the above example is that, in spite of having per-
formed different motions with different accelerations, twins B and C suffered ex-
actly the same aging, and both aged less than twin A. Consequently, different
accelerations can not justify differences in aging.
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